Publicação: HARDY'S INEQUALITIES IN FINITE DIMENSIONAL HILBERT SPACES
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Mathematical Soc
Tipo
Artigo
Direito de acesso
Resumo
We study the behaviour of the smallest possible constants d(n), and c(n), in Hardy's inequalities Sigma(n)(k=1) (1/k Sigma(k)(j=1) a(j))(2) <= d(n) Sigma(n)(k=1) a(k)(2), (a(1), ..., a(n)) is an element of R-n and integral(infinity)(0) (1/x integral(x)(0) f(t) dt)(2) dx <= c(n) integral(infinity)(0) f(2)(x) dx, f is an element of H-n, for the finite dimensional spaces R-n and H-n := { f : f(o)(x) f(t)dt = e(-x/2) p(x) : p is an element of P-n,p(0) = 0}, where P-n is the set of real-valued algebraic polynomials of degree not exceeding n. The constants d(n) and c(n) are identified to be expressed in terms of the smallest zeros of the so-called continuous dual Hahn polynomials and the two-sided estimates for d(n) and c(n) of the form 4 - c/In n < d(n), c(n) < 4 - c/In-2 n, c > 0 are established.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Proceedings Of The American Mathematical Society. Providence: Amer Mathematical Soc, v. 149, n. 6, p. 2515-2529, 2021.