Logotipo do repositório
 

Publicação:
HARDY'S INEQUALITIES IN FINITE DIMENSIONAL HILBERT SPACES

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Amer Mathematical Soc

Tipo

Artigo

Direito de acesso

Resumo

We study the behaviour of the smallest possible constants d(n), and c(n), in Hardy's inequalities Sigma(n)(k=1) (1/k Sigma(k)(j=1) a(j))(2) <= d(n) Sigma(n)(k=1) a(k)(2), (a(1), ..., a(n)) is an element of R-n and integral(infinity)(0) (1/x integral(x)(0) f(t) dt)(2) dx <= c(n) integral(infinity)(0) f(2)(x) dx, f is an element of H-n, for the finite dimensional spaces R-n and H-n := { f : f(o)(x) f(t)dt = e(-x/2) p(x) : p is an element of P-n,p(0) = 0}, where P-n is the set of real-valued algebraic polynomials of degree not exceeding n. The constants d(n) and c(n) are identified to be expressed in terms of the smallest zeros of the so-called continuous dual Hahn polynomials and the two-sided estimates for d(n) and c(n) of the form 4 - c/In n < d(n), c(n) < 4 - c/In-2 n, c > 0 are established.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Proceedings Of The American Mathematical Society. Providence: Amer Mathematical Soc, v. 149, n. 6, p. 2515-2529, 2021.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação