Logo do repositório
 

Fast non-technical losses identification through Optimum-Path Forest

dc.contributor.authorRamos, Caio C. O. [UNESP]
dc.contributor.authorSouza, André N. [UNESP]
dc.contributor.authorPapa, João P.
dc.contributor.authorFalcão, Alexandre X.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2014-05-27T11:24:34Z
dc.date.available2014-05-27T11:24:34Z
dc.date.issued2009-12-09
dc.description.abstractFraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied for automatic commercial frauds identification, however they suffer from slow convergence and high computational burden. We introduced here the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than neural networks and similar to Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. © 2009 IEEE.en
dc.description.affiliationDepartment of Electrical Engineering São Paulo State University, Bauru, São Paulo
dc.description.affiliationInstitute of Computing University of Campinas, Campinas, São Paulo
dc.description.affiliationUnespDepartment of Electrical Engineering São Paulo State University, Bauru, São Paulo
dc.identifierhttp://dx.doi.org/10.1109/ISAP.2009.5352910
dc.identifier.citation2009 15th International Conference on Intelligent System Applications to Power Systems, ISAP '09.
dc.identifier.doi10.1109/ISAP.2009.5352910
dc.identifier.lattes8212775960494686
dc.identifier.scopus2-s2.0-76549090785
dc.identifier.urihttp://hdl.handle.net/11449/71478
dc.language.isoeng
dc.relation.ispartof2009 15th International Conference on Intelligent System Applications to Power Systems, ISAP '09
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectNon-technical losses
dc.subjectOptimum-path forest
dc.subjectArtificial Neural Network
dc.subjectComputational burden
dc.subjectElectric power company
dc.subjectEnergy systems
dc.subjectForest classifiers
dc.subjectFraud detection
dc.subjectNon-technical loss
dc.subjectSupervised pattern recognition
dc.subjectClassifiers
dc.subjectElectric losses
dc.subjectElectric utilities
dc.subjectIntelligent systems
dc.subjectPattern recognition
dc.subjectSupport vector machines
dc.subjectNeural networks
dc.titleFast non-technical losses identification through Optimum-Path Foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dspace.entity.typePublication
unesp.author.lattes8212775960494686[2]
unesp.author.orcid0000-0002-8617-5404[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos