Repository logo
 

Publication:
Reagentless Detection of Low-Molecular-Weight Triamterene Using Self-Doped TiO2 Nanotubes

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Type

Article

Access right

Acesso restrito

Abstract

TiO2 nanotube electrodes were self-doped by electrochemical cathodic polarization, potentially converting Ti4+ into Ti3+, and thereby increasing both the normalized conductance and capacitance of the electrodes. One-hundred (from 19.2 ± 0.1 μF cm-2 to 1.9 ± 0.1 mF cm-2 for SD-TNT) and two-fold (from ∼6.2 to ∼14.4 mS cm-2) concomitant increases in capacitance and conductance, respectively, were achieved in self-doped TiO2 nanotubes; this was compared with the results for their undoped counterparts. The increases in the capacitance and conductance indicate that the Ti3+ states enhance the density of the electronic states; this is attributed to an existing relationship between the conductance and capacitance for nanoscale structures built on macroscopic electrodes. The ratio between the conductance and capacitance was used to detect and quantify, in a reagentless manner, the triamterene (TRT) diuretic by designing an appropriate doping level of TiO2 nanotubes. The sensitivity was improved when using immittance spectroscopy (Patil et al. Anal. Chem. 2015, 87, 944-950; Bedatty Fernandes et al. Anal. Chem. 2015, 87, 12137-12144) (2.4 × 106 % decade-1) compared to cyclic voltammetry (5.8 × 105 % decade-1). Furthermore, a higher linear range from 0.5 to 100 μmol L-1 (5.0 to 100 μmol L-1 for cyclic voltammetry measurements) and a lower limit-of-detection of approximately 0.2 μmol L-1 were achieved by using immittance function methodology (better than the 4.1 μmol L-1 obtained by using cyclic voltammetry).

Description

Keywords

Language

English

Citation

Analytical Chemistry, v. 90, n. 12, p. 7651-7658, 2018.

Related itens

Sponsors

Units

Departments

Undergraduate courses

Graduate programs