Logo do repositório

Slow-Fast Normal Forms Arising from Piecewise Smooth Vector Fields

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

We study planar piecewise smooth differential systems of the form z˙=Z(z)=1+sgn(F)2X(z)+1-sgn(F)2Y(z), where F: R2→ R is a smooth map having 0 as a regular value. We consider linear regularizations Zεφ of Z by replacing sgn (F) by φ(F/ ε) in the last equation, with ε> 0 small and φ being a transition function (not necessarily monotonic). Nonlinear regularizations of the vector field Z whose transition function is monotonic are considered too. It is a well-known fact that the regularized system is a slow-fast system. In this paper, we study typical singularities of slow-fast systems that arise from (linear or nonlinear) regularizations, namely, fold, transcritical and pitchfork singularities. Furthermore, the dependence of the slow-fast system on the graphical properties of the transition function is investigated.

Descrição

Palavras-chave

Geometric singular perturbation theory, Piecewise smooth vector fields, Regularization of piecewise smooth vector fields, Transition function

Idioma

Inglês

Citação

Journal of Dynamical and Control Systems, v. 29, n. 4, p. 1709-1726, 2023.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso