Publicação:
How population loss through habitat boundaries determines the dynamics of a predator-prey system

dc.contributor.authorMaciel, Gabriel Andreguetto [UNESP]
dc.contributor.authorKraenkel, Roberto Andre [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2015-11-03T15:28:50Z
dc.date.available2015-11-03T15:28:50Z
dc.date.issued2014-12-01
dc.description.abstractThe increased persistence of predator-prey systems when interactions are distributed through the space has been acknowledged by both empirical and theoretical studies. One salient feature of predator-prey interactions in heterogeneous space, for example, is the existence of cycles with reduced amplitude when compared with a homogeneous landscape. Although the role of spatial interactions in shaping the dynamics of predator-prey systems has been extensively studied, still very few works have focused on the effects of habitat loss and fragmentation on these systems. In this work, we study the population dynamics of a predator-prey system in a single finite habitat with flux at the boundaries. Species movement and growth are described through a reaction-diffusion model with Rosenzweig-MacArthur type local interactions. Conforming with the existing literature, we find that the reduction of habitat size, or increasing of species movement rates equivalently, has the potential to decrease the amplitude of oscillations and even bring the system to a steady coexistence equilibrium above a threshold. We observe, however, situations in which this trend is reversed. This occurs when species movement rates and response at patch boundaries interact to induce non-trivial patterns of species distributions. These distributions are characterized by anti-correlation between predator and prey, creating then spatial refugia for prey. Our results highlight the role of population loss through habitat boundaries in determining the dynamics of predator-prey interactions. (C) 2014 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Estadual Paulista, Instituto de Física Teórica, BR-01140070 Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Instituto de Física Teórica, BR-01140070 Sao Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent33-42
dc.identifierhttp://www.sciencedirect.com/science/article/pii/S1476945X14000889
dc.identifier.citationEcological Complexity. Amsterdam: Elsevier Science Bv, v. 20, p. 33-42, 2014.
dc.identifier.doi10.1016/j.ecocom.2014.07.005
dc.identifier.issn1476-945X
dc.identifier.urihttp://hdl.handle.net/11449/130044
dc.identifier.wosWOS:000348010800004
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofEcological Complexity
dc.relation.ispartofjcr1.634
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectPredator-preyen
dc.subjectFinite habitaten
dc.subjectReaction-diffusion equationen
dc.subjectMean occupancy timeen
dc.subjectPopulation cyclesen
dc.subjectHabitat lossen
dc.titleHow population loss through habitat boundaries determines the dynamics of a predator-prey systemen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0001-5602-5184[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos