Logo do repositório

Microbial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweat

dc.contributor.authorSilva, Robson R.
dc.contributor.authorRaymundo-Pereira, Paulo A.
dc.contributor.authorCampos, Anderson M.
dc.contributor.authorWilson, Deivy
dc.contributor.authorOtoni, Caio G.
dc.contributor.authorBarud, Hernane S.
dc.contributor.authorCosta, Carlos A.R.
dc.contributor.authorDomeneguetti, Rafael R. [UNESP]
dc.contributor.authorBalogh, Debora T.
dc.contributor.authorRibeiro, Sidney J.L. [UNESP]
dc.contributor.authorOliveira Jr., Osvaldo N.
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversity Center of Araraquara (UNIARA)
dc.contributor.institutionBrazilian Center for Research in Energy and Materials (CNPEM)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T02:06:11Z
dc.date.available2020-12-12T02:06:11Z
dc.date.issued2020-10-01
dc.description.abstractThe pursuit of biocompatible, breathable and skin-conformable wearable sensors has predominantly focused on synthetic stretchable hydrophobic polymers. Microbial nanocellulose (MNC) is an exceptional skin-substitute natural polymer routinely used for wound dressing and offers unprecedented potential as substrate for wearable sensors. A versatile strategy for engineering wearable sensing platforms is reported, with sensing units made of screen-printed carbon electrodes (SPCEs) on MNC. As-prepared SPCEs were used to detect the toxic metals cadmium (Cd2+) and lead (Pb2+) with limits of detection of 1.01 and 0.43 μM, respectively, which are sufficient to detect these metal ions in human sweat and urine. SPCEs functionalized through anodic pre-treatments were used for detecting uric acid and 17β-estradiol in artificial sweat, with detection limits of 1.8 μM and 0.58 μM, respectively. The electrochemical treatment created oxygen groups on the carbon surfaces, thus improving wettability and hydrophilicity. MNC was herein exploited as an adhesive-free, yet highly skin-adherent platform for wearable sensing devices that also benefit from the semi-permeable, non-allergenic, and renewable features that make MNC unique within the pool of materials that have been used for such a purpose. Our findings have clear implications for the developments on greener and more biocompatible but still efficient substrates and may pave the route for combining immunosensing devices with drug delivery therapies.en
dc.description.affiliationSão Carlos Institute of Physics University of São Paulo (USP)
dc.description.affiliationSão Carlos Institute of Chemistry University of São Paulo (USP)
dc.description.affiliationInstitute of Chemistry University of Campinas (UNICAMP), P.O. Box 6154
dc.description.affiliationBiopolymers and Biomaterials Laboratory (BIOPOLMAT) University Center of Araraquara (UNIARA)
dc.description.affiliationBrazilian Nanotechnology National Laboratory (LNNano) Brazilian Center for Research in Energy and Materials (CNPEM)
dc.description.affiliationSão Paulo State University (UNESP) Department of General and Inorganic Chemistry Rua Professor Francisco Degni, 55, Araraquara14800-060
dc.description.affiliationUnespSão Paulo State University (UNESP) Department of General and Inorganic Chemistry Rua Professor Francisco Degni, 55, Araraquara14800-060
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/14262–7
dc.description.sponsorshipIdFAPESP: 2015/01770–0
dc.description.sponsorshipIdFAPESP: 2016/01919–6
dc.description.sponsorshipIdFAPESP: 2016/06612–6
dc.description.sponsorshipIdCNPq: 423952/2018-8
dc.identifierhttp://dx.doi.org/10.1016/j.talanta.2020.121153
dc.identifier.citationTalanta, v. 218.
dc.identifier.doi10.1016/j.talanta.2020.121153
dc.identifier.issn0039-9140
dc.identifier.scopus2-s2.0-85084803099
dc.identifier.urihttp://hdl.handle.net/11449/200421
dc.language.isoeng
dc.relation.ispartofTalanta
dc.sourceScopus
dc.subjectBacterial cellulose
dc.subjectBiosensor
dc.subjectEstradiol
dc.subjectHeavy metals
dc.subjectUric acid
dc.subjectWearable electronics
dc.titleMicrobial nanocellulose adherent to human skin used in electrochemical sensors to detect metal ions and biomarkers in sweaten
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentQuímica Inorgânica - IQARpt

Arquivos