Logo do repositório

Land-use change and its impact on physical and mechanical properties of Archaeological Black Earth in the Amazon rainforest

dc.contributor.authorSoares, Marcelo Dayron Rodrigues
dc.contributor.authorde Souza, Zigomar Menezes
dc.contributor.authorCampos, Milton César Costa
dc.contributor.authorda Silva, Reginaldo Barboza [UNESP]
dc.contributor.authorEsteban, Diego Alexander Aguilera
dc.contributor.authorNoronha, Renato Lopes
dc.contributor.authordos Santos Gomes, Mayara Germana
dc.contributor.authorda Cunha, José Maurício
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionAgriculture and Environment
dc.contributor.institutionUniversidade Federal da Paraíba (UFPB)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:54:25Z
dc.date.available2021-06-25T10:54:25Z
dc.date.issued2021-07-01
dc.description.abstractThe intense pressure of anthropic actions to change the use and management can promote the degradation of anthropogenic soils with high natural fertility and high content of organic matter such as the Archaeological Black Earths of the Brazilian Amazon. Therefore, this study aimed to quantify the impact of land use and occupation in the Amazon biome on the physical and mechanical properties of Archaeological Black Earth. The research was carried out in the municipality of Novo Aripuanã, in the south of Amazonas State (Brazil), in a Chromic, Pretic, Acrisol with native forest, pasture, and pigeon pea. The soil properties of bulk density, mean weighted diameter, soil resistance to penetration, macroporosity, microporosity, particle size distribution (sand, silt, and clay), water-dispersible clay, flocculation index, total organic carbon, and preconsolidation pressure were assessed in the 0.0–0.1 and 0.1–0.2 m soil layers. Archaeological black earth under native forest showed better soil structural properties such as greater macroporosity and lower bulk density and resistance to penetration. The conversion to other uses promotes soil compaction and increases the resistance to compression. However, the greatest negative impacts on soil properties occurred when the land-use change was for pasture than for pigeon pea. The pigeon pea crop promoted the increase of soil total organic carbon in the 0.0–0.1 m layer. The soil mechanical behavior showed a greater load-bearing capacity in the native forest area for the surface layer than the subsurface layer. The preconsolidation pressure allowed to determine that the pasture land-use has a greater occurrence of compaction and might suffer additional compaction if the applied pressures on the soil during grazing are larger than the higher limit of the confidence interval of load-bearing capacity models when compared to the pigeon pea land-use.en
dc.description.affiliationUniversity of Campinas (UNICAMP) – School of Agricultural Engineering, Av. Cândido Rondon, 508
dc.description.affiliationFederal University of Amazonas (UFAM) – Institute of Education Agriculture and Environment, Street 29 de Agosto, 786 B
dc.description.affiliationFederal University of Paraíba (UFPB) – Department of Soils and Rural Engineering, Road BR 079 - Km 12
dc.description.affiliationSão Paulo State University (UNESP) Experimental Campuses of Registro, Av. Nelson Brihi Badur, 430
dc.description.affiliationUnespSão Paulo State University (UNESP) Experimental Campuses of Registro, Av. Nelson Brihi Badur, 430
dc.identifierhttp://dx.doi.org/10.1016/j.catena.2021.105266
dc.identifier.citationCatena, v. 202.
dc.identifier.doi10.1016/j.catena.2021.105266
dc.identifier.issn0341-8162
dc.identifier.scopus2-s2.0-85102039449
dc.identifier.urihttp://hdl.handle.net/11449/207394
dc.language.isoeng
dc.relation.ispartofCatena
dc.sourceScopus
dc.subjectAnthropogenic soils
dc.subjectPreconsolidation pressure
dc.subjectSoil compaction
dc.subjectSoil management
dc.subjectTotal organic carbon
dc.titleLand-use change and its impact on physical and mechanical properties of Archaeological Black Earth in the Amazon rainforesten
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Agronômica - FCAVRpt

Arquivos