Logotipo do repositório
 

Publicação:
Using Aggregated Electrical Loads for the Multinodal Load Forecasting

dc.contributor.authorMoreira-Júnior, Joaquim R. [UNESP]
dc.contributor.authorAbreu, Thays [UNESP]
dc.contributor.authorMinussi, Carlos R. [UNESP]
dc.contributor.authorLopes, Mara L. M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T19:51:33Z
dc.date.available2022-04-28T19:51:33Z
dc.date.issued2022-01-01
dc.description.abstractForecasting electrical loads is essential from a practical and economic point of view. With this forecast, it is possible to plan the supply of energy safely and continuously, and without interruption. In the literature, most of the works that perform electric load forecasting consider the global demand, that is, the sum of the total energy consumption. This work proposes to carry out the load forecasting along with the buses of a distribution system (multinodal forecasting) based on the use of the load aggregation concept. The proposed method uses a Fuzzy-ARTMAP neural network to forecast electrical loads in substations (multinodal forecasting) 24 h ahead, with the main objective of studying and identifying possible aggregations of multinodal loads, aiming at improving the multinodal load forecasting. The database used was from an electricity distribution subsystem, consisting of nine substations.en
dc.description.affiliationUNESP–São Paulo State University Câmpus de Ilha Solteira, Av. Brasil, 56
dc.description.affiliationUnespUNESP–São Paulo State University Câmpus de Ilha Solteira, Av. Brasil, 56
dc.identifierhttp://dx.doi.org/10.1007/s40313-022-00906-1
dc.identifier.citationJournal of Control, Automation and Electrical Systems.
dc.identifier.doi10.1007/s40313-022-00906-1
dc.identifier.issn2195-3899
dc.identifier.issn2195-3880
dc.identifier.scopus2-s2.0-85126018241
dc.identifier.urihttp://hdl.handle.net/11449/223594
dc.language.isoeng
dc.relation.ispartofJournal of Control, Automation and Electrical Systems
dc.sourceScopus
dc.subjectAdaptive resonance theory
dc.subjectAggregate electric loads
dc.subjectArtificial neural network
dc.subjectElectrical system distribution
dc.subjectMultinodal load forecasting
dc.titleUsing Aggregated Electrical Loads for the Multinodal Load Forecastingen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0003-0166-1962[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos