Main belt asteroids taxonomical information from dark energy survey data
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
While proper orbital elements are currently available for more than 1 million asteroids, taxonomical information is still lagging behind. Surveys like SDSS-MOC4 provided preliminary information for more than 100 000 objects, but many asteroids still lack even a basic taxonomy. In this study, we use Dark Energy Survey (DES) data to provide new information on asteroid physical properties. By cross-correlating the new DES data base with other data bases, we investigate how asteroid taxonomy is reflected in DES data. While the resolution of DES data is not sufficient to distinguish between different asteroid taxonomies within the complexes, except for V-type objects, it can provide information on whether an asteroid belongs to the C- or S-complex. Here, machine learning methods optimized through the use of genetic algorithms were used to predict the labels of more than 68 000 asteroids with no prior taxonomic information. Using a high-quality, limited set of asteroids with data on gri slopes and i - z colours, we detected 409 new possible V-type asteroids. Their orbital distribution is highly consistent with that of other known V-type objects.
Descrição
Palavras-chave
catalogues, celestial mechanics, minor planets, asteroids: general
Idioma
Inglês
Citação
Monthly Notices of the Royal Astronomical Society, v. 527, n. 3, p. 6495-6505, 2024.




