Logotipo do repositório
 

Publicação:
Electronic mechanism for resistive switching in metal/insulator/metal nanodevices

dc.contributor.authorRaebiger, Hannes
dc.contributor.authorPadilha, Antonio Claudio M.
dc.contributor.authorRocha, Alexandre Reily [UNESP]
dc.contributor.authorDalpian, Gustavo M.
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionYokohama Natl Univ
dc.contributor.institutionBrazillian Nanotechnol Natl Lab LNNano CNPEM
dc.contributor.institutionFlextron Inst Tecnol
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T20:00:39Z
dc.date.available2020-12-10T20:00:39Z
dc.date.issued2020-07-15
dc.description.abstractPassing current at given threshold voltages through a metal/insulator/metal sandwich structure device may change its resistive state. Such switching has been rationalized by ion drift models, or changes in electronic states, but the underlying physical mechanism is poorly understood. We propose a new model based on electrostatics to explain multiple resistive states in memristors that contain large defect densities. The different resistive states are due to spontaneously charged states of the insulator 'storage medium', characterized by different 'band bending' solutions of Poisson's equation. For an insulator with mainly donor type defects, the low-resistivity state is characterized by a negatively charged insulator due to convex band bending, and the high-resistivity state by a positively charged insulator due to concave band bending; vice versa for insulators with mainly acceptor type defects. We show that these multiple solutions coexist only for nanoscale devices and for bias voltages limited by the switching threshold values, where the system charge spontaneously changes and the system switches to another resistive state. We outline the general principles how this functionality depends on material properties and defect abundance of the insulator 'storage medium'.en
dc.description.affiliationUniv Fed ABC, Ctr Ciencias Nat & Humanas, Santo Andre, SP, Brazil
dc.description.affiliationYokohama Natl Univ, Dept Phys, Yokohama, Kanagawa, Japan
dc.description.affiliationBrazillian Nanotechnol Natl Lab LNNano CNPEM, BR-13083970 Campinas, SP, Brazil
dc.description.affiliationFlextron Inst Tecnol, BR-13918900 Jaguariuna, Brazil
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, Sao Paulo, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, Sao Paulo, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2011/21719-8
dc.description.sponsorshipIdFAPESP: 2015/05830-7
dc.description.sponsorshipIdFAPESP: 13/22577-8
dc.format.extent9
dc.identifierhttp://dx.doi.org/10.1088/1361-6463/ab7a58
dc.identifier.citationJournal Of Physics D-applied Physics. Bristol: Iop Publishing Ltd, v. 53, n. 29, 9 p., 2020.
dc.identifier.doi10.1088/1361-6463/ab7a58
dc.identifier.issn0022-3727
dc.identifier.urihttp://hdl.handle.net/11449/196928
dc.identifier.wosWOS:000536815200001
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.ispartofJournal Of Physics D-applied Physics
dc.sourceWeb of Science
dc.subjectresistive memory
dc.subjectelectronic switching
dc.subjectnanodevice
dc.subjectmemristor
dc.titleElectronic mechanism for resistive switching in metal/insulator/metal nanodevicesen
dc.typeArtigo
dcterms.licensehttp://iopscience.iop.org/page/copyright
dcterms.rightsHolderIop Publishing Ltd
dspace.entity.typePublication
unesp.author.orcid0000-0003-3969-9165[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos