Logotipo do repositório
 

Publicação:
Born-Oppenheimer approximation in an effective field theory language

dc.contributor.authorBrambilla, Nora
dc.contributor.authorKrein, Gastão [UNESP]
dc.contributor.authorTarrús Castellà, Jaume
dc.contributor.authorVairo, Antonio
dc.contributor.institutionTechnische Universität München
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:27:00Z
dc.date.available2022-04-29T08:27:00Z
dc.date.issued2018-01-01
dc.description.abstractThe Born-Oppenheimer approximation is the standard tool for the study of molecular systems. It is founded on the observation that the energy scale of the electron dynamics in a molecule is larger than that of the nuclei. A very similar physical picture can be used to describe QCD states containing heavy quarks as well as light-quarks or gluonic excitations. In this work, we derive the Born-Oppenheimer approximation for QED molecular systems in an effective field theory framework by sequentially integrating out degrees of freedom living at energies above the typical energy scale where the dynamics of the heavy degrees of freedom occurs. In particular, we compute the matching coefficients of the effective field theory for the case of the H2+ diatomic molecule that are relevant to compute its spectrum up to O(mα5). Ultrasoft photon loops contribute at this order, being ultimately responsible for the molecular Lamb shift. In the effective field theory the scaling of all the operators is homogeneous, which facilitates the determination of all the relevant contributions, an observation that may become useful for high-precision calculations. Using the above case as a guidance, we construct under some conditions an effective field theory for QCD states formed by a color-octet heavy quark-antiquark pair bound with a color-octet light-quark pair or excited gluonic state, highlighting the similarities and differences between the QED and QCD systems. Assuming that the multipole expansion is applicable, we construct the heavy-quark potential up to next-to-leading order in the multipole expansion in terms of nonperturbative matching coefficients to be obtained from lattice QCD.en
dc.description.affiliationPhysik-Department Technische Universität München, James-Franck-Strasse 1
dc.description.affiliationInstitute for Advanced Study Technische Universität München, Lichtenbergstrasse 2a
dc.description.affiliationInstituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II
dc.description.affiliationUnespInstituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II
dc.identifierhttp://dx.doi.org/10.1103/PhysRevD.97.016016
dc.identifier.citationPhysical Review D, v. 97, n. 1, 2018.
dc.identifier.doi10.1103/PhysRevD.97.016016
dc.identifier.issn2470-0029
dc.identifier.issn2470-0010
dc.identifier.scopus2-s2.0-85041714561
dc.identifier.urihttp://hdl.handle.net/11449/228500
dc.language.isoeng
dc.relation.ispartofPhysical Review D
dc.sourceScopus
dc.titleBorn-Oppenheimer approximation in an effective field theory languageen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos