New mathematical modelling for grain size distribution adjustment in concrete
Carregando...
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Fontes externas
Fontes externas
Resumo
Concrete used in civil engineering is a composite obtained from the combination of coarse and fine aggregates, cement and water, and its cost and quality are normally associated to the proportion of its constituents (ceramic formulation), as well as the reduction of water consumption. The aggregates used in concrete may have diverse origins, and the syenite extracted at Pedra Branca Alkaline Massif is one of the materials that can be used for this substitution. In order to do so, a reference formulation of concrete was calculated and optimized using the mathematical models of Andreasen, and syenite was added substituting 25, 50, 75 and 100% of the fine aggregate. In order to maintain the original granulometric distribution, an algorithm was developed to compensate the different particle size distributions. The grain size correction guaranteed the maintenance of the original properties of the concrete, reaching values of mechanical strength above 35 MPa.
Descrição
Palavras-chave
Algorithm, Concrete, Mechanical properties, Packing equations, Syenite
Idioma
Inglês
Citação
Ceramica, v. 65, p. 54-57.





