Logotipo do repositório
 

Publicação:
Antibacterial activity of the non-cytotoxic peptide (p-BthTX-I)2 and its serum degradation product against multidrug-resistant bacteria

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Antimicrobial peptides can be used systemically, however, their susceptibility to proteases is a major obstacle in peptide-based therapeutic development. In the present study, the serum stability of p-BthTX-I (KKYRYHLKPFCKK) and (p-BthTX-I)2, a p-BthTX-I disulfide-linked dimer, were analyzed by mass spectrometry and analytical high-performance liquid chromatography (HPLC). Antimicrobial activities were assessed by determining their minimum inhibitory concentrations (MIC) using cation-adjusted Mueller-Hinton broth. Furthermore, biofilm eradication and time-kill kinetics were performed. Our results showed that p-BthTX-I and (p-BthTX-I)2 were completely degraded after 25 min. Mass spectrometry showed that the primary degradation product was a peptide that had lost four lysine residues on its C-terminus region (des-Lys12/Lys13-(p-BthTX-I)2), which was stable after 24 h of incubation. The antibacterial activities of the peptides p-BthTX-I, (p-BthTX-I)2, and des-Lys12/Lys13-(p-BthTX-I)2 were evaluated against a variety of bacteria, including multidrug-resistant strains. Des-Lys12/Lys13-(p-BthTX-I)2 and (p-BthTX-I)2 degraded Staphylococcus epidermidis biofilms. Additionally, both the peptides exhibited bactericidal activities against planktonic S. epidermidis in time-kill assays. The emergence of bacterial resistance to a variety of antibiotics used in clinics is the ultimate challenge for microbial infection control. Therefore, our results demonstrated that both peptides analyzed and the product of proteolysis obtained from (p-BthTX-I)2 are promising prototypes as novel drugs to treat multidrug-resistant bacterial infections.

Descrição

Palavras-chave

(P-BthTX-I)2, Antimicrobial peptides, Biofilm, Multidrug-resistant bacteria

Idioma

Inglês

Como citar

Molecules, v. 22, n. 11, 2017.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação