Publicação: Asymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation
dc.contributor.author | Kraenkel, Roberto André [UNESP] | |
dc.contributor.author | Kamchatnov, A. M. [UNESP] | |
dc.contributor.author | Umarov, B. A. [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Russian Academy of Sciences | |
dc.contributor.institution | Uzbek Academy of Sciences | |
dc.date.accessioned | 2014-05-20T14:08:10Z | |
dc.date.accessioned | 2022-04-28T20:38:59Z | |
dc.date.available | 2014-05-20T14:08:10Z | |
dc.date.available | 2022-04-28T20:38:59Z | |
dc.date.issued | 2002-09-01 | |
dc.description.abstract | Asymptotic behavior of initially “large and smooth” pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrödinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that the distribution of eigenvalues depends on two functions—intensity [formula presented] of the initial pulse and its initial chirp [formula presented] The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found. © 2002 The American Physical Society. | en |
dc.description.affiliation | Russian Acad Sci, Inst Spect, Troitsk 142190, Moscow Region, Russia | |
dc.description.affiliation | Univ Estadual Paulista, UNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil | |
dc.description.affiliation | Uzbek Acad Sci, Phys Tech Inst, Tashkent 700084 84, Uzbekistan | |
dc.description.affiliation | Institute of Spectroscopy Russian Academy of Sciences, Troitsk, Moscow Region, 142190 | |
dc.description.affiliation | Instituto de Física Teórica Universidade Estadual Paulista–UNESP, Rua Pamplona 145, São Paulo, 01405-900 | |
dc.description.affiliation | Physical-Technical Institute Uzbek Academy of Sciences, G. Mavlyanov Street, 2-b, Tashkent-84, 700084 | |
dc.description.affiliationUnesp | Univ Estadual Paulista, UNESP, Inst Fis Teor, BR-01405900 São Paulo, Brazil | |
dc.description.affiliationUnesp | Instituto de Física Teórica Universidade Estadual Paulista–UNESP, Rua Pamplona 145, São Paulo, 01405-900 | |
dc.format.extent | 10 | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevE.66.036609 | |
dc.identifier.citation | Physical Review E. College Pk: Amer Physical Soc, v. 66, n. 3, 10 p., 2002. | |
dc.identifier.citation | Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, v. 66, n. 3, 2002. | |
dc.identifier.doi | 10.1103/PhysRevE.66.036609 | |
dc.identifier.file | WOS000178624400036.pdf | |
dc.identifier.issn | 1539-3755 | |
dc.identifier.issn | 1063-651X | |
dc.identifier.scopus | 2-s2.0-41349118480 | |
dc.identifier.uri | http://hdl.handle.net/11449/244047 | |
dc.identifier.wos | WOS:000178624400036 | |
dc.language.iso | eng | |
dc.publisher | Amer Physical Soc | |
dc.relation.ispartof | Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.source | Scopus | |
dc.title | Asymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation | en |
dc.type | Artigo | |
dcterms.license | http://publish.aps.org/authors/transfer-of-copyright-agreement | |
dcterms.rightsHolder | Amer Physical Soc | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- WOS000178624400036.pdf
- Tamanho:
- 135.57 KB
- Formato:
- Adobe Portable Document Format