Logotipo do repositório
 

Publicação:
Resource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithm

dc.contributor.authorLieira, Douglas D. [UNESP]
dc.contributor.authorQuessada, Matheus S. [UNESP]
dc.contributor.authorCristiani, Andre L.
dc.contributor.authorMeneguette, Rodolfo I.
dc.contributor.authorVelazquez, R.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFed Inst Sao Paulo IFSP
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2023-07-29T11:39:36Z
dc.date.available2023-07-29T11:39:36Z
dc.date.issued2020-01-01
dc.description.abstractThe explosion of IoT technology poses new challenges for researchers in the concept of cloud computing, mainly in improving the distribution of services, which need to be provided with greater efficiency and less latency. Therefore, this work seeks to optimize the methodology of resource allocation in Edge Computing, seeking to improve the quality of service (QoS) to the user. For this, it was developed an algorithm for efficient resource allocation using grey wolves optimization technique, named as Resource Allocation Technique for Edge Computing (RATEC). The algorithm adopted the meta-heuristic technique to choose the best Edge when allocating the resources of user equipment (UE). In this work, it was considered that the UEs are composed of processing, storage, time and memory resources. The algorithm uses these resources to calculate the fitness of each Edge and decide which one to allocate, if available. The RATEC has been compared with two other policies and has managed to serve a number most significant of UEs, reducing the number of services refused and presenting a low number of blockages while searching for an Edge.en
dc.description.affiliationSao Paulo State Univ, Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationFed Inst Sao Paulo IFSP, Catanduva, SP, Brazil
dc.description.affiliationFed Univ Sao Carlos UFSCAR, Sao Carlos, SP, Brazil
dc.description.affiliationUniv Sao Paulo, Sao Carlos, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 407248/2018-8
dc.description.sponsorshipIdCNPq: 309822/2018-1
dc.format.extent6
dc.identifier.citation2020 IEEE Latin-american Conference on Communications (latincom 2020). New York: IEEE, 6 p., 2020.
dc.identifier.issn2330-989X
dc.identifier.urihttp://hdl.handle.net/11449/245189
dc.identifier.wosWOS:000926136200035
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2020 Ieee Latin-american Conference On Communications (latincom 2020)
dc.sourceWeb of Science
dc.subjectresource allocation
dc.subjectedge computing
dc.subjectmeta-heuristic
dc.titleResource Allocation Technique for Edge Computing using Grey Wolf Optimization Algorithmen
dc.typeTrabalho apresentado em eventopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt

Arquivos