Logotipo do repositório
 

Publicação:
Production of short-chain fructooligosaccharides (scFOS) using extracellular β-D-fructofuranosidase produced by Aspergillus thermomutatus

dc.contributor.authorTódero, Larissa Midiane [UNESP]
dc.contributor.authorRechia, Carem Gledes Vargas
dc.contributor.authorGuimarães, Luis Henrique Souza
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2019-10-06T15:46:35Z
dc.date.available2019-10-06T15:46:35Z
dc.date.issued2019-01-01
dc.description.abstractAspergillus thermomutatus produces an extracellular β-D-fructofuranosidase when cultured in Khanna medium with sucrose as additional carbon source at 30°C under agitation for 72 hr. Addition of glucose and fructose in the culture medium affected the production of the enzyme negatively. The optimum hydrolytic activity was achieved at 60°C and pH 5.0, with half-life (T50) of 30 hr at 50°C and 62% of its activity maintained at pH 5.0 for 48 hr. The extracellular extract containing β-D-fructofuranosidase was effective in producing fructooligosaccharides (FOS), mainly 1-kestose. The highest concentration of FOS was obtained at 30°C and 60°C, indicating the existence of at least two enzymes with transfructosylating activity. At 30°C, the maximal FOS concentration was obtained from 48 to 72 hr, while at 60°C, it was achieved only at 72 hr. The best production of FOS (86.7 g/L) was obtained using 500 g/L sucrose as substrate. Practical application: Fructooligosaccharides (FOS) are linear oligomers of fructose units with important applications in the food industry as sweetening agents and biopreservatives. Due to the presence of β-glycosidic bonds, they cannot be hydrolyzed by human enzymes, allowing the use of FOS-containing products by diabetics. FOS used in the preparation of dairy products imparts humectancy to soft baked products, lowers the freezing point of frozen desserts, provides crispness to low-fat cookies, and provides many other advantages. Diets containing FOS can reduce the levels of triglycerides and cholesterol and improve the absorption of ions, such as Ca2+ and Mg2+. FOS also exhibit bifidogenic effect on Bifidobacterium and Lactobacillus strains in the colon. Industrially, FOS is produced during the transfructosylation reaction of sucrose catalyzed by β-D-fructofuranosidase. Identifying new sources of β-D-fructofuranosidase is an important challenge to meet its industrial demand.en
dc.description.affiliationInstituto de Química de Araraquara UNESP
dc.description.affiliationFaculdade de Ciências Farmacêuticas de Ribeirão Preto USP
dc.description.affiliationFaculdade de Filosofia Ciências e Letras de Ribeirão Preto USP
dc.description.affiliationUnespInstituto de Química de Araraquara UNESP
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2016/11311-5
dc.identifierhttp://dx.doi.org/10.1111/jfbc.12937
dc.identifier.citationJournal of Food Biochemistry, v. 43, n. 8, 2019.
dc.identifier.doi10.1111/jfbc.12937
dc.identifier.issn1745-4514
dc.identifier.issn0145-8884
dc.identifier.scopus2-s2.0-85067443707
dc.identifier.urihttp://hdl.handle.net/11449/187766
dc.language.isoeng
dc.relation.ispartofJournal of Food Biochemistry
dc.rights.accessRightsAcesso restritopt
dc.sourceScopus
dc.subjectAspergillus
dc.subjectfructooligosaccharide
dc.subjecttransfructosylating
dc.subjectβ-D-fructofuranosidase
dc.titleProduction of short-chain fructooligosaccharides (scFOS) using extracellular β-D-fructofuranosidase produced by Aspergillus thermomutatusen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-2921-3929[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt

Arquivos