Logotipo do repositório
 

Publicação:
QK-Means: A Clustering Technique Based on Community Detection and K-Means for Deployment of Cluster Head Nodes

dc.contributor.authorFerreira, Leonardo N.
dc.contributor.authorPinto, A. R. [UNESP]
dc.contributor.authorZhao, Liang
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T19:30:39Z
dc.date.available2020-12-10T19:30:39Z
dc.date.issued2012-01-01
dc.description.abstractWireless Sensor Networks (WSN) are a special kind of ad-hoc networks that is usually deployed in a monitoring field in order to detect some physical phenomenon. Due to the low dependability of individual nodes, small radio coverage and large areas to be monitored, the organization of nodes in small clusters is generally used. Moreover, a large number of WSN nodes is usually deployed in the monitoring area to increase WSN dependability. Therefore, the best cluster head positioning is a desirable characteristic in a WSN. In this paper, we propose a hybrid clustering algorithm based on community detection in complex networks and traditional K-means clustering technique: the QK-Means algorithm. Simulation results show that QK-Means detect communities and sub-communities thus lost message rate is decreased and WSN coverage is increased.en
dc.description.affiliationUniv Sao Paulo, Inst Math & Comp Sci, Av Trabalhador Sao Carlense 400,Caixa Postal 668, BR-13560970 Sao Paulo, Brazil
dc.description.affiliationUNESP, DCCE, IBILCE, Sao Carlos, SP, Brazil
dc.description.affiliationUnespUNESP, DCCE, IBILCE, Sao Carlos, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent7
dc.identifier.citation2012 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 7 p., 2012.
dc.identifier.issn2161-4393
dc.identifier.urihttp://hdl.handle.net/11449/196020
dc.identifier.wosWOS:000309341300115
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2012 International Joint Conference On Neural Networks (ijcnn)
dc.sourceWeb of Science
dc.titleQK-Means: A Clustering Technique Based on Community Detection and K-Means for Deployment of Cluster Head Nodesen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.orcid0000-0002-1502-6604[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos