Publicação: QK-Means: A Clustering Technique Based on Community Detection and K-Means for Deployment of Cluster Head Nodes
dc.contributor.author | Ferreira, Leonardo N. | |
dc.contributor.author | Pinto, A. R. [UNESP] | |
dc.contributor.author | Zhao, Liang | |
dc.contributor.author | IEEE | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2020-12-10T19:30:39Z | |
dc.date.available | 2020-12-10T19:30:39Z | |
dc.date.issued | 2012-01-01 | |
dc.description.abstract | Wireless Sensor Networks (WSN) are a special kind of ad-hoc networks that is usually deployed in a monitoring field in order to detect some physical phenomenon. Due to the low dependability of individual nodes, small radio coverage and large areas to be monitored, the organization of nodes in small clusters is generally used. Moreover, a large number of WSN nodes is usually deployed in the monitoring area to increase WSN dependability. Therefore, the best cluster head positioning is a desirable characteristic in a WSN. In this paper, we propose a hybrid clustering algorithm based on community detection in complex networks and traditional K-means clustering technique: the QK-Means algorithm. Simulation results show that QK-Means detect communities and sub-communities thus lost message rate is decreased and WSN coverage is increased. | en |
dc.description.affiliation | Univ Sao Paulo, Inst Math & Comp Sci, Av Trabalhador Sao Carlense 400,Caixa Postal 668, BR-13560970 Sao Paulo, Brazil | |
dc.description.affiliation | UNESP, DCCE, IBILCE, Sao Carlos, SP, Brazil | |
dc.description.affiliationUnesp | UNESP, DCCE, IBILCE, Sao Carlos, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.format.extent | 7 | |
dc.identifier.citation | 2012 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, 7 p., 2012. | |
dc.identifier.issn | 2161-4393 | |
dc.identifier.uri | http://hdl.handle.net/11449/196020 | |
dc.identifier.wos | WOS:000309341300115 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | 2012 International Joint Conference On Neural Networks (ijcnn) | |
dc.source | Web of Science | |
dc.title | QK-Means: A Clustering Technique Based on Community Detection and K-Means for Deployment of Cluster Head Nodes | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-1502-6604[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |