Heuristic Active Learning for the Prediction of Epileptic Seizures Using Single EEG Channel
dc.contributor.author | Marques, Joao M. C. | |
dc.contributor.author | Cerdeira, Hilda A. [UNESP] | |
dc.contributor.author | Tanaka, Edgar | |
dc.contributor.author | Vitor, Conrado de | |
dc.contributor.author | Gomez, Paula | |
dc.contributor.author | Zheng, H. | |
dc.contributor.author | Callejas, Z. | |
dc.contributor.author | Griol, D. | |
dc.contributor.author | Wang, H. | |
dc.contributor.author | Hu, X | |
dc.contributor.author | Schmidt, H. | |
dc.contributor.author | Baumbach, J. | |
dc.contributor.author | Dickerson, J. | |
dc.contributor.author | Zhang, L. | |
dc.contributor.institution | Epistem Gomez & Gomez Ltda ME | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2019-10-04T12:35:19Z | |
dc.date.available | 2019-10-04T12:35:19Z | |
dc.date.issued | 2018-01-01 | |
dc.description.abstract | Predicting epileptic seizure occurrence has long been a goal of the community surrounding it. Accurate prediction, however, is still elusive. This work presents a modified pipeline for the training of seizure prediction systems which aims to attenuate the effects of current data labeling strategies - and consequent data mislabeling of samples that heavily affect classifiers that are trained on it. This paper also presents a seizure prediction system trained following the proposed pipeline, which improved our system's performance by reducing its time-in-warning (TiW) by over 14%, while improving its prediction sensitivity to 72.4%, bringing its performance closer to the state-of-the-art performance (83.1% prediction sensitivity) for systems with similar TiW (41%) [1], while only requiring input from two scalp EEG electrodes - without making use of any variables external to the single EEG channels. | en |
dc.description.affiliation | Epistem Gomez & Gomez Ltda ME, Cietec, Ave Prof Lineu Prestes 2242,Sala 244, BR-05508000 Sao Paulo, Brazil | |
dc.description.affiliation | Univ Sao Paulo, Escola Politecn, Rua Prof Luciano Gualberto Travessa 3,380, BR-05508010 Sao Paulo, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Inst Fis Teor UNESP, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Inst Fis Teor UNESP, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, Brazil | |
dc.format.extent | 2628-2634 | |
dc.identifier.citation | Proceedings 2018 Ieee International Conference On Bioinformatics And Biomedicine (bibm). New York: Ieee, p. 2628-2634, 2018. | |
dc.identifier.issn | 2156-1125 | |
dc.identifier.uri | http://hdl.handle.net/11449/185428 | |
dc.identifier.wos | WOS:000458654000450 | |
dc.language.iso | eng | |
dc.publisher | Ieee | |
dc.relation.ispartof | Proceedings 2018 Ieee International Conference On Bioinformatics And Biomedicine (bibm) | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.title | Heuristic Active Learning for the Prediction of Epileptic Seizures Using Single EEG Channel | en |
dc.type | Trabalho apresentado em evento | |
dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
dcterms.rightsHolder | Ieee | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |