Logo do repositório
 

Heuristic Active Learning for the Prediction of Epileptic Seizures Using Single EEG Channel

dc.contributor.authorMarques, Joao M. C.
dc.contributor.authorCerdeira, Hilda A. [UNESP]
dc.contributor.authorTanaka, Edgar
dc.contributor.authorVitor, Conrado de
dc.contributor.authorGomez, Paula
dc.contributor.authorZheng, H.
dc.contributor.authorCallejas, Z.
dc.contributor.authorGriol, D.
dc.contributor.authorWang, H.
dc.contributor.authorHu, X
dc.contributor.authorSchmidt, H.
dc.contributor.authorBaumbach, J.
dc.contributor.authorDickerson, J.
dc.contributor.authorZhang, L.
dc.contributor.institutionEpistem Gomez & Gomez Ltda ME
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T12:35:19Z
dc.date.available2019-10-04T12:35:19Z
dc.date.issued2018-01-01
dc.description.abstractPredicting epileptic seizure occurrence has long been a goal of the community surrounding it. Accurate prediction, however, is still elusive. This work presents a modified pipeline for the training of seizure prediction systems which aims to attenuate the effects of current data labeling strategies - and consequent data mislabeling of samples that heavily affect classifiers that are trained on it. This paper also presents a seizure prediction system trained following the proposed pipeline, which improved our system's performance by reducing its time-in-warning (TiW) by over 14%, while improving its prediction sensitivity to 72.4%, bringing its performance closer to the state-of-the-art performance (83.1% prediction sensitivity) for systems with similar TiW (41%) [1], while only requiring input from two scalp EEG electrodes - without making use of any variables external to the single EEG channels.en
dc.description.affiliationEpistem Gomez & Gomez Ltda ME, Cietec, Ave Prof Lineu Prestes 2242,Sala 244, BR-05508000 Sao Paulo, Brazil
dc.description.affiliationUniv Sao Paulo, Escola Politecn, Rua Prof Luciano Gualberto Travessa 3,380, BR-05508010 Sao Paulo, Brazil
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor UNESP, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor UNESP, Rua Dr Bento Teobaldo Ferraz 271,Bloco 2, BR-01140070 Sao Paulo, Brazil
dc.format.extent2628-2634
dc.identifier.citationProceedings 2018 Ieee International Conference On Bioinformatics And Biomedicine (bibm). New York: Ieee, p. 2628-2634, 2018.
dc.identifier.issn2156-1125
dc.identifier.urihttp://hdl.handle.net/11449/185428
dc.identifier.wosWOS:000458654000450
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartofProceedings 2018 Ieee International Conference On Bioinformatics And Biomedicine (bibm)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleHeuristic Active Learning for the Prediction of Epileptic Seizures Using Single EEG Channelen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos