Logo do repositório
 

Machine learning, quantum chaos, and pseudorandom evolution

dc.contributor.authorAlves, Daniel W.F. [UNESP]
dc.contributor.authorFlynn, Michael O.
dc.contributor.institutionUniversity of California
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-29T08:28:51Z
dc.date.available2022-04-29T08:28:51Z
dc.date.issued2020-05-01
dc.description.abstractBy modeling quantum chaotic dynamics with ensembles of random operators, we explore how machine learning algorithms can be used to detect pseudorandom behavior in qubit systems. We analyze samples consisting of pieces of correlation functions and find that machine learning algorithms are capable of determining the degree of pseudorandomness which a system is subject to in a precise sense. This is done without computing any correlators explicitly. Interestingly, even samples drawn from two-point functions are found to be sufficient to solve this classification problem. This presents the possibility of using deep learning algorithms to explore late time behavior in chaotic quantum systems which have been inaccessible to simulation.en
dc.description.affiliationCenter for Quantum Mathematics and Physics Department of Physics University of California
dc.description.affiliationUniversidade Estadual Paulista Sao Paulo State University Institute for Theoretical Physics (IFT), R. Dr. Bento T. Ferraz 271, Bl. II
dc.description.affiliationUnespUniversidade Estadual Paulista Sao Paulo State University Institute for Theoretical Physics (IFT), R. Dr. Bento T. Ferraz 271, Bl. II
dc.identifierhttp://dx.doi.org/10.1103/PhysRevA.101.052338
dc.identifier.citationPhysical Review A, v. 101, n. 5, 2020.
dc.identifier.doi10.1103/PhysRevA.101.052338
dc.identifier.issn2469-9934
dc.identifier.issn2469-9926
dc.identifier.scopus2-s2.0-85085842653
dc.identifier.urihttp://hdl.handle.net/11449/228807
dc.language.isoeng
dc.relation.ispartofPhysical Review A
dc.sourceScopus
dc.titleMachine learning, quantum chaos, and pseudorandom evolutionen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos