Machine learning, quantum chaos, and pseudorandom evolution
dc.contributor.author | Alves, Daniel W.F. [UNESP] | |
dc.contributor.author | Flynn, Michael O. | |
dc.contributor.institution | University of California | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2022-04-29T08:28:51Z | |
dc.date.available | 2022-04-29T08:28:51Z | |
dc.date.issued | 2020-05-01 | |
dc.description.abstract | By modeling quantum chaotic dynamics with ensembles of random operators, we explore how machine learning algorithms can be used to detect pseudorandom behavior in qubit systems. We analyze samples consisting of pieces of correlation functions and find that machine learning algorithms are capable of determining the degree of pseudorandomness which a system is subject to in a precise sense. This is done without computing any correlators explicitly. Interestingly, even samples drawn from two-point functions are found to be sufficient to solve this classification problem. This presents the possibility of using deep learning algorithms to explore late time behavior in chaotic quantum systems which have been inaccessible to simulation. | en |
dc.description.affiliation | Center for Quantum Mathematics and Physics Department of Physics University of California | |
dc.description.affiliation | Universidade Estadual Paulista Sao Paulo State University Institute for Theoretical Physics (IFT), R. Dr. Bento T. Ferraz 271, Bl. II | |
dc.description.affiliationUnesp | Universidade Estadual Paulista Sao Paulo State University Institute for Theoretical Physics (IFT), R. Dr. Bento T. Ferraz 271, Bl. II | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevA.101.052338 | |
dc.identifier.citation | Physical Review A, v. 101, n. 5, 2020. | |
dc.identifier.doi | 10.1103/PhysRevA.101.052338 | |
dc.identifier.issn | 2469-9934 | |
dc.identifier.issn | 2469-9926 | |
dc.identifier.scopus | 2-s2.0-85085842653 | |
dc.identifier.uri | http://hdl.handle.net/11449/228807 | |
dc.language.iso | eng | |
dc.relation.ispartof | Physical Review A | |
dc.source | Scopus | |
dc.title | Machine learning, quantum chaos, and pseudorandom evolution | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |