Logotipo do repositório
 

Publicação:
Experimental and artificial neural network approach for prediction of the thermal degradation behavior of sugarcane-based vulcanization additives in natural rubber compounds

dc.contributor.authorZanchet, Aline
dc.contributor.authorMonticeli, Francisco Maciel [UNESP]
dc.contributor.authorde Sousa, Fabiula Danielli Bastos
dc.contributor.authorOrnaghi, Heitor Luiz
dc.contributor.institutionSENAI Institute of Innovation in Polymer Engineering
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de Pelotas
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUniversidade Federal da Integração da América Latina (UNILA)
dc.date.accessioned2022-04-29T08:35:48Z
dc.date.available2022-04-29T08:35:48Z
dc.date.issued2021-12-01
dc.description.abstractThe use of natural additives in elastomeric compounds is gaining the special attention of researchers and industry due to their potential applications as environmentally friendly compounds and lower cost-related. Another important issue is the use of powerful mathematical tools to predict experimental results, which is crucial for saving cost and time. Artificial neural network (ANN) combined with other mathematical methods, such as surface response methodology (SRM), can guarantee reliability and faster response of the predicted data for similar materials or properties. The great advantage of the present method is the fast prediction of the analyzed property, in the present case, thermal degradation curves, at heating rates not experimentally tested. In this study, a modified activator from sugarcane bagasse was incorporated in different concentrations in natural rubber compounds, and the degradation behavior was simulated by ANN and SRM based on the experimental thermal degradation curves at different heating rates from the thermogravimetric analysis. The simulated results showed an outstanding agreement with the experimental ones, evidencing the importance of using ANN and SRM tools in the prediction of properties of elastomeric compounds.en
dc.description.affiliationSENAI Institute of Innovation in Polymer Engineering, Av. Pres. João Goulart, 682
dc.description.affiliationDepartment of Materials and Technology Universidade Estadual Júlio de Mesquita Filho, Rua Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá
dc.description.affiliationTechnology Development Center Universidade Federal de Pelotas, Rua Gomes Carneiro, 1
dc.description.affiliationCenter of Engineering Modeling and Applied Social Science Universidade Federal do ABC, Avenida dos Estados, 5001
dc.description.affiliationUniversidade Federal da Integração da América Latina (UNILA), Avenida Silvio Américo Sasdelli, 1842
dc.description.affiliationUnespDepartment of Materials and Technology Universidade Estadual Júlio de Mesquita Filho, Rua Dr. Ariberto Pereira da Cunha, 333, Guaratinguetá
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2012/14844–3
dc.identifierhttp://dx.doi.org/10.1016/j.clet.2021.100303
dc.identifier.citationCleaner Engineering and Technology, v. 5.
dc.identifier.doi10.1016/j.clet.2021.100303
dc.identifier.issn2666-7908
dc.identifier.scopus2-s2.0-85118131283
dc.identifier.urihttp://hdl.handle.net/11449/229800
dc.language.isoeng
dc.relation.ispartofCleaner Engineering and Technology
dc.sourceScopus
dc.subjectArtificial neural network
dc.subjectGreen additive
dc.subjectNatural rubber
dc.subjectSugarcane
dc.subjectThermal degradation
dc.titleExperimental and artificial neural network approach for prediction of the thermal degradation behavior of sugarcane-based vulcanization additives in natural rubber compoundsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-5525-0483[1]
unesp.author.orcid0000-0002-5776-2247 0000-0002-5776-2247[3]
unesp.author.orcid0000-0002-0005-9534[4]
unesp.departmentMateriais e Tecnologia - FEGpt

Arquivos