Publicação: An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method
dc.contributor.author | Marucci, Evandro A. [UNESP] | |
dc.contributor.author | Zafalon, Geraldo F. D. [UNESP] | |
dc.contributor.author | Momente, Julio C. [UNESP] | |
dc.contributor.author | Neves, Leandro A. [UNESP] | |
dc.contributor.author | Valencio, Carlo R. [UNESP] | |
dc.contributor.author | Pinto, Alex R. | |
dc.contributor.author | Cansian, Adriano M. [UNESP] | |
dc.contributor.author | Souza, Rogeria C. G. de [UNESP] | |
dc.contributor.author | Yang Shiyou | |
dc.contributor.author | Machado, Jose M. [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Federal de Santa Catarina (UFSC) | |
dc.contributor.institution | Zhejiang Univ | |
dc.date.accessioned | 2015-03-18T15:55:36Z | |
dc.date.available | 2015-03-18T15:55:36Z | |
dc.date.issued | 2014-01-01 | |
dc.description.abstract | With the advance of genomic researches, the number of sequences involved in comparative methods has grown immensely. Among them, there are methods for similarities calculation, which are used by many bioinformatics applications. Due the huge amount of data, the union of low complexity methods with the use of parallel computing is becoming desirable. The k-mers counting is a very efficient method with good biological results. In this work, the development of a parallel algorithm for multiple sequence similarities calculation using the k-mers counting method is proposed. Tests show that the algorithm presents a very good scalability and a nearly linear speedup. For 14 nodes was obtained 12x speedup. This algorithm can be used in the parallelization of some multiple sequence alignment tools, such as MAFFT and MUSCLE. | en |
dc.description.affiliation | Sao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.affiliation | Univ Fed Santa Catarina, Dept Control Engn & Automat, BR-89065300 Blumenau, SC, Brazil | |
dc.description.affiliation | Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China | |
dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 06/59592-0 | |
dc.format.extent | 6 | |
dc.identifier | http://dx.doi.org/10.1155/2014/563016 | |
dc.identifier.citation | Biomed Research International. New York: Hindawi Publishing Corporation, 6 p., 2014. | |
dc.identifier.doi | 10.1155/2014/563016 | |
dc.identifier.file | WOS000340143200001.pdf | |
dc.identifier.file | WOS000340143200001.epub | |
dc.identifier.issn | 2314-6133 | |
dc.identifier.lattes | 0095921943345974 | |
dc.identifier.orcid | 0000-0003-4494-1454 | |
dc.identifier.uri | http://hdl.handle.net/11449/117235 | |
dc.identifier.wos | WOS:000340143200001 | |
dc.language.iso | eng | |
dc.publisher | Hindawi Publishing Corporation | |
dc.relation.ispartof | Biomed Research International | |
dc.relation.ispartofjcr | 2.583 | |
dc.relation.ispartofsjr | 0,935 | |
dc.rights.accessRights | Acesso aberto | |
dc.source | Web of Science | |
dc.title | An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method | en |
dc.type | Artigo | |
dcterms.rightsHolder | Hindawi Publishing Corporation | |
dspace.entity.type | Publication | |
unesp.author.lattes | 0095921943345974[7] | |
unesp.author.orcid | 0000-0003-4494-1454[7] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |