Logotipo do repositório
 

Publicação:
An Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Method

dc.contributor.authorMarucci, Evandro A. [UNESP]
dc.contributor.authorZafalon, Geraldo F. D. [UNESP]
dc.contributor.authorMomente, Julio C. [UNESP]
dc.contributor.authorNeves, Leandro A. [UNESP]
dc.contributor.authorValencio, Carlo R. [UNESP]
dc.contributor.authorPinto, Alex R.
dc.contributor.authorCansian, Adriano M. [UNESP]
dc.contributor.authorSouza, Rogeria C. G. de [UNESP]
dc.contributor.authorYang Shiyou
dc.contributor.authorMachado, Jose M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de Santa Catarina (UFSC)
dc.contributor.institutionZhejiang Univ
dc.date.accessioned2015-03-18T15:55:36Z
dc.date.available2015-03-18T15:55:36Z
dc.date.issued2014-01-01
dc.description.abstractWith the advance of genomic researches, the number of sequences involved in comparative methods has grown immensely. Among them, there are methods for similarities calculation, which are used by many bioinformatics applications. Due the huge amount of data, the union of low complexity methods with the use of parallel computing is becoming desirable. The k-mers counting is a very efficient method with good biological results. In this work, the development of a parallel algorithm for multiple sequence similarities calculation using the k-mers counting method is proposed. Tests show that the algorithm presents a very good scalability and a nearly linear speedup. For 14 nodes was obtained 12x speedup. This algorithm can be used in the parallelization of some multiple sequence alignment tools, such as MAFFT and MUSCLE.en
dc.description.affiliationSao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUniv Fed Santa Catarina, Dept Control Engn & Automat, BR-89065300 Blumenau, SC, Brazil
dc.description.affiliationZhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 06/59592-0
dc.format.extent6
dc.identifierhttp://dx.doi.org/10.1155/2014/563016
dc.identifier.citationBiomed Research International. New York: Hindawi Publishing Corporation, 6 p., 2014.
dc.identifier.doi10.1155/2014/563016
dc.identifier.fileWOS000340143200001.pdf
dc.identifier.fileWOS000340143200001.epub
dc.identifier.issn2314-6133
dc.identifier.lattes0095921943345974
dc.identifier.orcid0000-0003-4494-1454
dc.identifier.urihttp://hdl.handle.net/11449/117235
dc.identifier.wosWOS:000340143200001
dc.language.isoeng
dc.publisherHindawi Publishing Corporation
dc.relation.ispartofBiomed Research International
dc.relation.ispartofjcr2.583
dc.relation.ispartofsjr0,935
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleAn Efficient Parallel Algorithm for Multiple Sequence Similarities Calculation Using a Low Complexity Methoden
dc.typeArtigo
dcterms.rightsHolderHindawi Publishing Corporation
dspace.entity.typePublication
unesp.author.lattes0095921943345974[7]
unesp.author.orcid0000-0003-4494-1454[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote Original

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
WOS000340143200001.epub
Tamanho:
955.47 KB
Formato:
EBook em formato .epub
Carregando...
Imagem de Miniatura
Nome:
WOS000340143200001.pdf
Tamanho:
1.39 MB
Formato:
Adobe Portable Document Format