Superfluid-Insulator Transition unambiguously detected by entanglement in one-dimensional disordered superfluids
Carregando...
Arquivos
Fonte externa
Fonte externa
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Nature Publishing Group
Tipo
Artigo
Direito de acesso
Arquivos
Fonte externa
Fonte externa
Resumo
We use entanglement to track the superfluid-insulator transition (SIT) in disordered fermionic superfluids described by the one-dimensional Hubbard model. Entanglement is found to have remarkable signatures of the SIT driven by i) the disorder strength V, ii) the concentration of impurities C and iii) the particle density n. Our results reveal the absence of a critical potential intensity on the SIT driven by V, i.e. any small V suffices to decrease considerably the degree of entanglement: it drops similar to 50% for V = -0.25t. We also find that entanglement is non-monotonic with the concentration C, approaching to zero for a certain critical value CC. This critical concentration is found to be related to a special type of localization, here named as fully-localized state, which can be also reached for a particular density n(C). Our results show that the SIT driven by n or C has distinct nature whether it leads to the full localization or to the ordinary one: it is a first-order quantum phase transition only when leading to full localization. In contrast, the SIT driven by V is never a first-order quantum phase transition independently on the type of localization reached.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Scientific Reports. London: Nature Publishing Group, v. 9, 6 p., 2019.


