Logotipo do repositório
 

Publicação:
Size and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Water

dc.contributor.authorGomes-Filho, Márcio S.
dc.contributor.authorTorres, Alberto
dc.contributor.authorReily Rocha, Alexandre [UNESP]
dc.contributor.authorPedroza, Luana S.
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T13:40:22Z
dc.date.available2023-07-29T13:40:22Z
dc.date.issued2023-02-16
dc.description.abstractMolecular dynamics simulations have been used in different scientific fields to investigate a broad range of physical systems. However, the accuracy of calculation is based on the model considered to describe the atomic interactions. In particular, ab initio molecular dynamics (AIMD) has the accuracy of density functional theory (DFT) and thus is limited to small systems and a relatively short simulation time. In this scenario, Neural Network Force Fields (NNFFs) have an important role, since they provide a way to circumvent these caveats. In this work, we investigate NNFFs designed at the level of DFT to describe liquid water, focusing on the size and quality of the training data set considered. We show that structural properties are less dependent on the size of the training data set compared to dynamical ones (such as the diffusion coefficient), and a good sampling (selecting data reference for the training process) can lead to a small sample with good precision.en
dc.description.affiliationCentro de Ciências Naturais e Humanas Universidade Federal do ABC, São Paulo
dc.description.affiliationInstituto de Física Universidade de São Paulo
dc.description.affiliationInstitute of Theoretical Physics São Paulo State University
dc.description.affiliationUnespInstitute of Theoretical Physics São Paulo State University
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent1422-1428
dc.identifierhttp://dx.doi.org/10.1021/acs.jpcb.2c09059
dc.identifier.citationJournal of Physical Chemistry B, v. 127, n. 6, p. 1422-1428, 2023.
dc.identifier.doi10.1021/acs.jpcb.2c09059
dc.identifier.issn1520-5207
dc.identifier.issn1520-6106
dc.identifier.scopus2-s2.0-85147507003
dc.identifier.urihttp://hdl.handle.net/11449/248312
dc.language.isoeng
dc.relation.ispartofJournal of Physical Chemistry B
dc.sourceScopus
dc.titleSize and Quality of Quantum Mechanical Data Set for Training Neural Network Force Fields for Liquid Wateren
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-8874-6947[3]
unesp.author.orcid0000-0003-1454-1919[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos