Logo do repositório

Bayesian data-driven framework for structural health monitoring of composite structures under limited experimental data

dc.contributor.authorFerreira, Leonardo de Paula S.
dc.contributor.authorTeloli, Rafael de O.
dc.contributor.authorda Silva, Samuel [UNESP]
dc.contributor.authorFigueiredo, Eloi
dc.contributor.authorMaia, Nuno
dc.contributor.authorCimini, Carlos A.
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)
dc.contributor.institutionUBFC - Université de Bourgogne Franche-Comté
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionLusófona University
dc.contributor.institutionUniversidade de Lisboa
dc.contributor.institutionUniversity of Lisbon
dc.date.accessioned2025-04-29T18:36:05Z
dc.date.issued2025-03-01
dc.description.abstractUltrasonic-guided waves can be used to monitor the health of thin-walled structures. However, the run of experimental damage tests on materials like carbon fiber-reinforced plastics can be impractical and costly. Instead, numerical models can be used to create hybrid datasets to train machine learning algorithms, integrating data from numerical and experimental tests. This paper presents a Bayesian-driven framework to compensate for limited experimental data regarding Lamb wave propagation in composite plates. Using Bayesian inference, the framework updates a numerical finite element model, considering observed uncertainties by sampling posterior probability density functions for input parameters using Markov–Chain Monte Carlo simulations with the Metropolis-Hastings algorithm. A neural network surrogate model speeds-up these simulations, leading to a model that replicates the uncertain experimental setup. This model then generates data to augment true experimental data. Finally, a one-dimensional convolutional neural network is trained on a three different datasets to analyze Lamb wave signals and assess damage. Comparing training strategies shows the hybrid dataset augmented by samples generated by the updated FE model gives the most accurate damage size predictions.en
dc.description.affiliationUFMG – Universidade Federal de Minas Gerais Faculdade de Engenharia Departamento de Engenharia de Estruturas Belo Horizonte – MG
dc.description.affiliationSupmicrotech-ENSMM CNRS FEMTO-ST Département Mécanique Appliquée UBFC - Université de Bourgogne Franche-Comté
dc.description.affiliationUNESP – Universidade Estadual Paulista Faculdade de Engenharia de Ilha Solteira Departamento de Engenharia Mecânica
dc.description.affiliationFaculty of Engineering Lusófona University
dc.description.affiliationCERIS Instituto Superior Técnico Universidade de Lisboa
dc.description.affiliationIDMEC Instituto Superior Técnico University of Lisbon
dc.description.affiliationUnespUNESP – Universidade Estadual Paulista Faculdade de Engenharia de Ilha Solteira Departamento de Engenharia Mecânica
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 19/19684-3
dc.description.sponsorshipIdCAPES: 2019.00164.CBM
dc.description.sponsorshipIdCNPq: 306526/2019-0
dc.description.sponsorshipIdCAPES: 88887.647575/2021-00
dc.description.sponsorshipIdCAPES: Finance Code 001
dc.format.extent738-760
dc.identifierhttp://dx.doi.org/10.1177/14759217241236801
dc.identifier.citationStructural Health Monitoring, v. 24, n. 2, p. 738-760, 2025.
dc.identifier.doi10.1177/14759217241236801
dc.identifier.issn1741-3168
dc.identifier.issn1475-9217
dc.identifier.scopus2-s2.0-105002564649
dc.identifier.urihttps://hdl.handle.net/11449/298057
dc.language.isoeng
dc.relation.ispartofStructural Health Monitoring
dc.sourceScopus
dc.subjectBayesian calibration
dc.subjectcomposite materials
dc.subjectconvolutional neural networks
dc.subjectmachine learning
dc.subjectStructural health monitoring
dc.titleBayesian data-driven framework for structural health monitoring of composite structures under limited experimental dataen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication85b724f4-c5d4-4984-9caf-8f0f0d076a19
relation.isOrgUnitOfPublication.latestForDiscovery85b724f4-c5d4-4984-9caf-8f0f0d076a19
unesp.author.orcid0000-0002-4963-8801[1]
unesp.author.orcid0000-0001-6430-3746[3]
unesp.author.orcid0000-0002-9168-6903[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos