Publicação: Ceramic coating for refractories protection against carbon oxidation, Part 1: Protection mechanisms
dc.contributor.author | Garcia Dos Santos, I. | |
dc.contributor.author | Cruz, F. | |
dc.contributor.author | Paskocimas, C. A. | |
dc.contributor.author | Nascimento Silva, S. | |
dc.contributor.author | Marques, O. R. | |
dc.contributor.author | Leite, E. R. | |
dc.contributor.author | Longo, Elson [UNESP] | |
dc.contributor.author | Varela, José Arana [UNESP] | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Cia. Side-RúRgica Nacional | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-27T11:19:43Z | |
dc.date.available | 2014-05-27T11:19:43Z | |
dc.date.issued | 1999-03-01 | |
dc.description.abstract | For retarding carbon oxidation in refractories during the preheating of metallurgical furnaces, a ceramic coating, made mainly of sodium phosphosilicate and clay was developed. The coating presents high adherence to the substrate with no swelling. The coating was characterized by thermal analysis, X-ray diffraction at room temperature (XRD) and at high temperature (HTXRD), X-ray fluorescence and scanning electronic microscopy (SEM). The glass transition temperature is reached at 800 °C and only glassy phase is observed above this temperature. Thus the mechanism of protection seems to be the formation of a glassy phase on the surface of the refractory, and the coating tends to be more efficient at temperatures higher than 800 °C. | en |
dc.description.affiliation | Univ. Federal de São Carlos, São Carlos | |
dc.description.affiliation | Cia. Side-RúRgica Nacional, Volta Redonda | |
dc.description.affiliation | Universidade Estadual Paulista, Araraquara | |
dc.description.affiliationUnesp | Universidade Estadual Paulista, Araraquara | |
dc.format.extent | 84-88 | |
dc.identifier.citation | InterCeram: International Ceramic Review, v. 48, n. 2, p. 84-88, 1999. | |
dc.identifier.issn | 0020-5214 | |
dc.identifier.scopus | 2-s2.0-0032635164 | |
dc.identifier.uri | http://hdl.handle.net/11449/65739 | |
dc.language.iso | eng | |
dc.relation.ispartof | InterCeram: International Ceramic Review | |
dc.relation.ispartofsjr | 0,116 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.subject | Clay | |
dc.subject | Fluorescence | |
dc.subject | Glass transition | |
dc.subject | Oxidation | |
dc.subject | Protective coatings | |
dc.subject | Refractory materials | |
dc.subject | Scanning electron microscopy | |
dc.subject | Substrates | |
dc.subject | Thermal effects | |
dc.subject | Thermoanalysis | |
dc.subject | X ray diffraction | |
dc.subject | Carbon oxidation | |
dc.subject | X ray fluorescence | |
dc.subject | Ceramic coatings | |
dc.title | Ceramic coating for refractories protection against carbon oxidation, Part 1: Protection mechanisms | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Química, Araraquara | pt |
unesp.department | Físico-Química - IQAR | pt |