Publicação: Understanding the impact of crosslinked PCL/ PEG/GelMA electrospun nanofibers on bactericidal activity
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Herein, we report the design of electrospun ultrathin fibers based on the combination of three different polymers polycaprolactone (PCL), polyethylene glycol (PEG), and gelatin methacryloyl (GelMA), and their potential bactericidal activity against three different bacteria Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Methi-cillin-resistant Staphylococcus aureus (MRSA). We evaluated the morphology, chemical structure and wettability before and after UV photocrosslinking of the produced scaffolds. Results showed that the developed scaffolds presented hydrophilic properties after PEG and GelMA incorporation. Moreover, they were able to significantly reduce gram-positive, negative, and MRSA bacteria mainly after UV photocrosslinking (PCL:PEG:GelMa-UV). Furthermore, we performed a series of study for gaining a better mechanistic understanding of the scaffolds bactericidal activity through protein adsorption study and analysis of the reactive oxygen species (ROS) levels. Furthermore, the in vivo subcutaneous implantation performed in rats confirmed the biocompatibility of our designed scaffolds.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
PLoS ONE, v. 13, n. 12, 2018.