Logotipo do repositório
 

Publicação:
Novel Approaches of Nanoceria with Magnetic, Photoluminescent, and Gas-Sensing Properties

dc.contributor.authorRocha, Leandro S.R.
dc.contributor.authorAmoresi, Rafael A.C. [UNESP]
dc.contributor.authorMoreno, Henrique [UNESP]
dc.contributor.authorRamirez, Miguel A. [UNESP]
dc.contributor.authorPonce, Miguel A.
dc.contributor.authorFoschini, Cesar R. [UNESP]
dc.contributor.authorLongo, Elson
dc.contributor.authorSimões, Alexandre Z. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionInstitute of Materials Science and Technology Investigation (INTEMA)
dc.date.accessioned2020-12-12T02:44:40Z
dc.date.available2020-12-12T02:44:40Z
dc.date.issued2020-06-30
dc.description.abstractThe modification of CeO2 with rare-earth elements opens up a wide range of applications as biomedical devices using infrared emission as well as magnetic and gas-sensing devices, once the structural, morphological, photoluminescent, magnetic, electric, and gas-sensing properties of these systems are strongly correlated to quantum electronic transitions between rare-earth f-states among defective species. Quantitative phase analysis revealed that the nanopowders are free from secondary phases and crystallize in the fluorite-type cubic structure. Magnetic coercive field measurements on the powders indicate that the substitution of cerium with lanthanum (8 wt %), in a fluorite-type cubic structure, created oxygen vacancies and led to a decrease in the fraction of Ce species in the 3+ state, resulting in a stronger room-temperature ferromagnetic response along with high coercivity (160 Oe). In addition to the magnetic and photoluminescent behavior, a fast response time (5.5 s) was observed after CO exposure, indicating that the defective structure of ceria-based materials corresponds to the key of success in terms of applications using photoluminescent, magnetic, or electrical behaviors.en
dc.description.affiliationDepartment of Chemistry Federal University of São Carlos (UFSCar)
dc.description.affiliationSchool of Engineering Sao Paulo State University (UNESP)
dc.description.affiliationInstitute of Materials Science and Technology Investigation (INTEMA)
dc.description.affiliationUnespSchool of Engineering Sao Paulo State University (UNESP)
dc.format.extent14879-14889
dc.identifierhttp://dx.doi.org/10.1021/acsomega.9b04250
dc.identifier.citationACS Omega, v. 5, n. 25, p. 14879-14889, 2020.
dc.identifier.doi10.1021/acsomega.9b04250
dc.identifier.issn2470-1343
dc.identifier.lattes1922357184842767
dc.identifier.orcid0000-0003-1300-4978
dc.identifier.scopus2-s2.0-85086831495
dc.identifier.urihttp://hdl.handle.net/11449/201897
dc.language.isoeng
dc.relation.ispartofACS Omega
dc.sourceScopus
dc.titleNovel Approaches of Nanoceria with Magnetic, Photoluminescent, and Gas-Sensing Propertiesen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes1922357184842767[6]
unesp.author.orcid0000-0002-6059-2197[1]
unesp.author.orcid0000-0002-7523-6013[2]
unesp.author.orcid0000-0001-8062-7791[7]
unesp.author.orcid0000-0003-1300-4978[6]
unesp.departmentMateriais e Tecnologia - FEGpt

Arquivos