Logotipo do repositório
 

Publicação:
Generalized Anderson's theorem for superconductors derived from topological insulators

dc.contributor.authorAndersen, Lionel
dc.contributor.authorRamires, Aline [UNESP]
dc.contributor.authorWang, Zhiwei
dc.contributor.authorLorenz, Thomas
dc.contributor.authorAndo, Yoichi
dc.contributor.institutionUniv Cologne
dc.contributor.institutionMax Planck Inst Phys Komplexer Syst
dc.contributor.institutionICTP SAIFR
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T19:52:21Z
dc.date.available2020-12-10T19:52:21Z
dc.date.issued2020-02-01
dc.description.abstractA well-known result in unconventional superconductivity is the fragility of nodal superconductors against nonmagnetic impurities. Despite this common wisdom, Bi2Se3 -based topological superconductors have recently displayed unusual robustness against disorder. Here, we provide a theoretical framework that naturally explains what protects Cooper pairs from strong scattering in complex superconductors. Our analysis is based on the concept of superconducting fitness and generalizes the famous Anderson's theorem into superconductors having multiple internal degrees of freedom with simple assumptions such as the Born approximation. For concreteness, we report on the extreme example of the Cu-x(PbSe)(5)(BiSe3)(6) superconductor. Thermal conductivity measurements down to 50 mK not only give unambiguous evidence for the existence of nodes but also reveal that the energy scale corresponding to the scattering rate is orders of magnitude larger than the superconducting energy gap. This provides the most spectacular case of the generalized Anderson's theorem protecting a nodal superconductor.en
dc.description.affiliationUniv Cologne, Phys Inst 2, D-50937 Cologne, Germany
dc.description.affiliationMax Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
dc.description.affiliationICTP SAIFR, BR-01140070 Sao Paulo, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Fis Teor, BR-01140070 Sao Paulo, SP, Brazil
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG; German Research Foundation)
dc.description.sponsorshipDeutsche Forschungsgemeinschaft (DFG; German Research Foundation) under Germany's Excellence Strategy-Cluster of Excellence Matter and Light for Quantum Computing (ML4Q)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipIdDeutsche Forschungsgemeinschaft (DFG; German Research Foundation): CRC 1238-277146847
dc.description.sponsorshipIdDeutsche Forschungsgemeinschaft (DFG; German Research Foundation) under Germany's Excellence Strategy-Cluster of Excellence Matter and Light for Quantum Computing (ML4Q): EXC 2004/1-390534769
dc.description.sponsorshipIdFAPESP: 2018/18287-8
dc.description.sponsorshipIdFUNDUNESP: 2338/2014-CCP
dc.description.sponsorshipIdFAPESP: 2016/01343-7
dc.format.extent7
dc.identifierhttp://dx.doi.org/10.1126/sciadv.aay6502
dc.identifier.citationScience Advances. Washington: Amer Assoc Advancement Science, v. 6, n. 9, 7 p., 2020.
dc.identifier.doi10.1126/sciadv.aay6502
dc.identifier.issn2375-2548
dc.identifier.urihttp://hdl.handle.net/11449/196668
dc.identifier.wosWOS:000518999500023
dc.language.isoeng
dc.publisherAmer Assoc Advancement Science
dc.relation.ispartofScience Advances
dc.sourceWeb of Science
dc.titleGeneralized Anderson's theorem for superconductors derived from topological insulatorsen
dc.typeArtigo
dcterms.rightsHolderAmer Assoc Advancement Science
dspace.entity.typePublication
unesp.author.orcid0000-0003-0182-2471[3]
unesp.author.orcid0000-0003-4832-5157[4]
unesp.author.orcid0000-0002-3553-3355[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos