Publicação: Sun-synchronous solar reflector orbits designed to warm Mars
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Although the Martian environment is very cold (averaging about − 60 ∘ C), highly oxidizing and desiccated, several studies have proposed human colonization of Mars. To carry out this ambitious goal, terraforming schemes have been designed to warm Mars and implant Earth-like life. Mars climate engineering includes the use of orbiting solar reflectors to increase the total solar insolation. In this study, Sun-synchronous solar reflectors orbits with inclination equal or less than 90 ∘ with respect to the orbital plane of Mars are considered to intervene with the Mars’ climate system. With different inclinations, a family of Sun-synchronous solar reflectors orbits distributes azimuthally the energy intercepted by the reflector. The two-body problem is considered, and the Gauss’s form of the variational equations is used to find the conditions to achieve a Sun-synchronous frozen orbit with inclination equal or less than 90 ∘, taking into account the effects of solar radiation pressure for a perfectly reflecting space mirror and Mars’ J2 oblateness perturbation.
Descrição
Palavras-chave
J2 oblateness perturbation, Mars climate engineering, Solar reflectors, Sun synchronous orbits, Terraforming scheme
Idioma
Inglês
Como citar
Astrophysics and Space Science, v. 364, n. 9, 2019.