Logotipo do repositório
 

Publicação:
Designing artificial neural networks for band structures computations in photonic crystals

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

We modeled Multilayer Perceptron and Extreme Learning Machine Artificial Neural Networks (ANNs) for computing band structures (BSTs) and photonic band gaps (PBGs) of 2D and 3D photonic crystals (PhCs). We aim at providing fast ANN models which might boost the computations of BDs and PBGs regarding electromagnetic solvers. The case studies considered 2D and 3D PhCs with different lattices, geometries, and materials. Datasets for ANN training were built by varying the geometric shapes' dimensions and the dielectric constants of the case-study PhCs. We demonstrate simple and fast-training ANNs capable of providing accurate BSTs and PGBs through speedy computations.

Descrição

Palavras-chave

Artificial neural network, Photonic band gap, Photonic band structure, Photonic crystal

Idioma

Inglês

Como citar

Proceedings of SPIE - The International Society for Optical Engineering, v. 10912.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação