Publicação: Estimating the degree of non-Markovianity using machine learning
dc.contributor.author | Fanchini, Felipe F. [UNESP] | |
dc.contributor.author | Karpat, Göktuǧ | |
dc.contributor.author | Rossatto, Daniel Z. [UNESP] | |
dc.contributor.author | Norambuena, Ariel | |
dc.contributor.author | Coto, Raúl | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | İzmir University of Economics | |
dc.contributor.institution | Universidad Mayor | |
dc.date.accessioned | 2021-06-25T10:54:05Z | |
dc.date.available | 2021-06-25T10:54:05Z | |
dc.date.issued | 2021-02-01 | |
dc.description.abstract | In the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography. | en |
dc.description.affiliation | Faculdade de Ciências Universidade Estadual Paulista (UNESP) | |
dc.description.affiliation | Faculty of Arts and Sciences Department of Physics İzmir University of Economics | |
dc.description.affiliation | Universidade Estadual Paulista (UNESP) Campus Experimental de Itapeva | |
dc.description.affiliation | Centro de Investigación DAiTA Lab Facultad de Estudios Interdisciplinarios Universidad Mayor | |
dc.description.affiliationUnesp | Faculdade de Ciências Universidade Estadual Paulista (UNESP) | |
dc.description.affiliationUnesp | Universidade Estadual Paulista (UNESP) Campus Experimental de Itapeva | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevA.103.022425 | |
dc.identifier.citation | Physical Review A, v. 103, n. 2, 2021. | |
dc.identifier.doi | 10.1103/PhysRevA.103.022425 | |
dc.identifier.issn | 2469-9934 | |
dc.identifier.issn | 2469-9926 | |
dc.identifier.lattes | 7226048122013565 | |
dc.identifier.orcid | 0000-0001-9432-1603 | |
dc.identifier.scopus | 2-s2.0-85101763185 | |
dc.identifier.uri | http://hdl.handle.net/11449/207370 | |
dc.language.iso | eng | |
dc.relation.ispartof | Physical Review A | |
dc.source | Scopus | |
dc.title | Estimating the degree of non-Markovianity using machine learning | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.lattes | 7226048122013565[3] | |
unesp.author.orcid | 0000-0001-9432-1603[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Ciências e Engenharia, Itapeva | pt |
unesp.department | Engenharia Industrial Madeireira - ICE | pt |