Logotipo do repositório
 

Publicação:
Estimating the degree of non-Markovianity using machine learning

dc.contributor.authorFanchini, Felipe F. [UNESP]
dc.contributor.authorKarpat, Göktuǧ
dc.contributor.authorRossatto, Daniel Z. [UNESP]
dc.contributor.authorNorambuena, Ariel
dc.contributor.authorCoto, Raúl
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionİzmir University of Economics
dc.contributor.institutionUniversidad Mayor
dc.date.accessioned2021-06-25T10:54:05Z
dc.date.available2021-06-25T10:54:05Z
dc.date.issued2021-02-01
dc.description.abstractIn the last few years, the application of machine learning methods has become increasingly relevant in different fields of physics. One of the most significant subjects in the theory of open quantum systems is the study of the characterization of non-Markovian memory effects that emerge dynamically throughout the time evolution of open systems as they interact with their surrounding environment. Here we consider two well-established quantifiers of the degree of memory effects, namely, the trace distance and the entanglement-based measures of non-Markovianity. We demonstrate that using machine learning techniques, in particular, support vector machine algorithms, it is possible to estimate the degree of non-Markovianity in two paradigmatic open system models with high precision. Our approach can be experimentally feasible to estimate the degree of non-Markovianity, since it requires a single or at most two rounds of state tomography.en
dc.description.affiliationFaculdade de Ciências Universidade Estadual Paulista (UNESP)
dc.description.affiliationFaculty of Arts and Sciences Department of Physics İzmir University of Economics
dc.description.affiliationUniversidade Estadual Paulista (UNESP) Campus Experimental de Itapeva
dc.description.affiliationCentro de Investigación DAiTA Lab Facultad de Estudios Interdisciplinarios Universidad Mayor
dc.description.affiliationUnespFaculdade de Ciências Universidade Estadual Paulista (UNESP)
dc.description.affiliationUnespUniversidade Estadual Paulista (UNESP) Campus Experimental de Itapeva
dc.identifierhttp://dx.doi.org/10.1103/PhysRevA.103.022425
dc.identifier.citationPhysical Review A, v. 103, n. 2, 2021.
dc.identifier.doi10.1103/PhysRevA.103.022425
dc.identifier.issn2469-9934
dc.identifier.issn2469-9926
dc.identifier.lattes7226048122013565
dc.identifier.orcid0000-0001-9432-1603
dc.identifier.scopus2-s2.0-85101763185
dc.identifier.urihttp://hdl.handle.net/11449/207370
dc.language.isoeng
dc.relation.ispartofPhysical Review A
dc.sourceScopus
dc.titleEstimating the degree of non-Markovianity using machine learningen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.lattes7226048122013565[3]
unesp.author.orcid0000-0001-9432-1603[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciências e Engenharia, Itapevapt
unesp.departmentEngenharia Industrial Madeireira - ICEpt

Arquivos