Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions
dc.contributor.author | Martínez-Finkelshtein, A. | |
dc.contributor.author | Silva Ribeiro, L. L. [UNESP] | |
dc.contributor.author | Sri Ranga, A. [UNESP] | |
dc.contributor.author | Tyaglov, M. | |
dc.contributor.institution | Baylor University | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Shanghai Jiao Tong University | |
dc.date.accessioned | 2020-12-12T01:57:19Z | |
dc.date.available | 2020-12-12T01:57:19Z | |
dc.date.issued | 2020-03-01 | |
dc.description.abstract | In a recent paper (Martínez-Finkelshtein et al. in Proc Am Math Soc 147:2625–2640, 2019) some interesting results were obtained concerning complementary Romanovski–Routh polynomials, a class of orthogonal polynomials on the unit circle and extended regular Coulomb wave functions. The class of orthogonal polynomials here are generalization of the class of circular Jacobi polynomials. In the present paper, in addition to looking at some further properties of the complementary Romanovski–Routh polynomials and associated orthogonal polynomials on the unit circle, behaviour of the zeros of these extended Coulomb wave functions are also studied. | en |
dc.description.affiliation | Departament of Mathematics Baylor University | |
dc.description.affiliation | Departamento de Matemática Aplicada IBILCE UNESP-Universidade Estadual Paulista, São José do Rio Preto | |
dc.description.affiliation | School of Mathematical Sciences Shanghai Jiao Tong University | |
dc.description.affiliationUnesp | Departamento de Matemática Aplicada IBILCE UNESP-Universidade Estadual Paulista, São José do Rio Preto | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Junta de Andalucía | |
dc.description.sponsorship | European Regional Development Fund | |
dc.description.sponsorshipId | FAPESP: 2016/09906-0 | |
dc.description.sponsorshipId | FAPESP: 2017/04358-8 | |
dc.description.sponsorshipId | CNPq: 304087/2018-1 | |
dc.description.sponsorshipId | Junta de Andalucía: FQM-229 | |
dc.description.sponsorshipId | European Regional Development Fund: MTM2017-89941-P | |
dc.identifier | http://dx.doi.org/10.1007/s00025-020-1167-8 | |
dc.identifier.citation | Results in Mathematics, v. 75, n. 1, 2020. | |
dc.identifier.doi | 10.1007/s00025-020-1167-8 | |
dc.identifier.issn | 1420-9012 | |
dc.identifier.issn | 1422-6383 | |
dc.identifier.scopus | 2-s2.0-85079722002 | |
dc.identifier.uri | http://hdl.handle.net/11449/200085 | |
dc.language.iso | eng | |
dc.relation.ispartof | Results in Mathematics | |
dc.source | Scopus | |
dc.subject | orthogonal polynomials on the unit circle | |
dc.subject | para-orthogonal polynomials | |
dc.subject | Romanovski–Routh polynomials | |
dc.subject | second order differential equations | |
dc.title | Complementary Romanovski–Routh Polynomials, Orthogonal Polynomials on the Unit Circle, and Extended Coulomb Wave Functions | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-1318-3892[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Matemática Aplicada - IBILCE | pt |