Logotipo do repositório
 

Publicação:
Prediction of occurrences of diverse chemical classes in the Asteraceae through artificial neural networks

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Wiley-Blackwell

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

The training and the application of a neural network system for the prediction of occurrences of secondary metabolites belonging to diverse chemical classes in the Asteraceae is described. From a database containing about 604 genera and 28,000 occurrences of secondary metabolites in the plant family, information was collected encompassing nine chemical classes and their respective occurrences for training of a multi-layer net using the back-propagation algorithm. The net supplied as output the presence or absence of the chemical classes as well as the number of compounds isolated from each taxon. The results provided by the net from the presence or absence of a chemical class showed a 89% hit rate; by excluding triterpenes from the analysis, only 5% of the genera studied exhibited errors greater than 10%. Copyright (C) 2004 John Wiley Sons, Ltd.

Descrição

Palavras-chave

artificial neural networks, chemical composition, occurrence number, secondary metabolites, Asteraceae

Idioma

Inglês

Como citar

Phytochemical Analysis. Chichester: John Wiley & Sons Ltd, v. 15, n. 6, p. 389-396, 2004.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação