Publicação:
TERRESTRIAL PLANET FORMATION IN A PROTOPLANETARY DISK WITH A LOCAL MASS DEPLETION: A SUCCESSFUL SCENARIO FOR THE FORMATION OF MARS

dc.contributor.authorIzidoro, A. [UNESP]
dc.contributor.authorHaghighipour, N.
dc.contributor.authorWinter, O. C. [UNESP]
dc.contributor.authorTsuchida, M. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCapes Fdn
dc.contributor.institutionUniv Nice Sophia Antipolis
dc.contributor.institutionUniv Hawaii Manoa
dc.contributor.institutionUniv Tubingen
dc.date.accessioned2014-12-03T13:11:07Z
dc.date.available2014-12-03T13:11:07Z
dc.date.issued2014-02-10
dc.description.abstractModels of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e similar to 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation ofMars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50%-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.en
dc.description.affiliationUniv Estadual Paulista, UNESP, Grp Dinamica Orbital & Planetol Guaratin, BR-12516410 Sao Paulo, Brazil
dc.description.affiliationCapes Fdn, Minist Educ Brazil, BR-70040020 Brasilia, DF, Brazil
dc.description.affiliationUniv Nice Sophia Antipolis, CNRS, Observ Cote Azur, Lab Lagrange, F-06304 Nice 4, France
dc.description.affiliationUniv Hawaii Manoa, Inst Astron, Honolulu, HI 96822 USA
dc.description.affiliationUniv Hawaii Manoa, NASA Astrobiol Inst, Honolulu, HI 96822 USA
dc.description.affiliationUniv Tubingen, Inst Astron & Astrophys, D-72076 Tubingen, Germany
dc.description.affiliationUniv Estadual Paulista, UNESP, DCCE IBILCE Sao Jos Rio Preto, BR-15054000 Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Grp Dinamica Orbital & Planetol Guaratin, BR-12516410 Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, DCCE IBILCE Sao Jos Rio Preto, BR-15054000 Sao Paulo, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipNASA Astrobiology Institute under the Institute for Astronomy, University of Hawaii
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.sponsorshipIdFAPESP: 11/08171-3
dc.description.sponsorshipIdNASA Astrobiology Institute under the Institute for Astronomy, University of HawaiiNNA09DA77A
dc.format.extent20
dc.identifierhttp://dx.doi.org/10.1088/0004-637X/782/1/31
dc.identifier.citationAstrophysical Journal. Bristol: Iop Publishing Ltd, v. 782, n. 1, 20 p., 2014.
dc.identifier.doi10.1088/0004-637X/782/1/31
dc.identifier.issn0004-637X
dc.identifier.lattes3560557415176717
dc.identifier.urihttp://hdl.handle.net/11449/112882
dc.identifier.wosWOS:000331848200031
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.ispartofAstrophysical Journal
dc.relation.ispartofjcr5.551
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectmethods: numericalen
dc.subjectPlanets and satellites - Formationen
dc.titleTERRESTRIAL PLANET FORMATION IN A PROTOPLANETARY DISK WITH A LOCAL MASS DEPLETION: A SUCCESSFUL SCENARIO FOR THE FORMATION OF MARSen
dc.typeArtigo
dcterms.licensehttp://iopscience.iop.org/page/copyright
dcterms.rightsHolderIop Publishing Ltd
dspace.entity.typePublication
unesp.author.lattes3560557415176717
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos