Logotipo do repositório
 

Publicação:
Bayesian Network for Hydrological Model: an inference approach

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

According to the Food and Agriculture Organisation, there are growing concerns about the availability and use of water in agriculture. The hydrological model generates a water balance and the resulting value indicates the amount of available water in a given area. The calculation of the water balance is fundamental for the development of new strategies for the management of water resources. One of its main adversities is the estimation of evapotranspiration, which may be considered a fundamental component. This factor considers climatological variables collected from weather stations that are spread over large areas. However, there are frequent cases of long periods of missing data. We evaluated the performance of a Bayesian Network inference model for estimating evapotranspiration in a large agricultural region in Brazil. To this end, the method considered factors such as accuracy, missing data, and model portability. The results indicate that the model achieves up to 86% accuracy when comparing estimated values to expected values derived from the Penman-Monteith equation. The results show that wind speed and relative humidity are the most critical climatological variables for accurate estimation.

Descrição

Palavras-chave

Bayesian Inference, Bayesian network, Evapotranspiration, Water Balance

Idioma

Inglês

Como citar

Proceedings of the International Joint Conference on Neural Networks, v. 2022-July.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação