Logo do repositório

Nilpotent centers from analytical systems on center manifolds

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Consider analytical three-dimensional differential systems having a singular point at the origin such that its linear part is y∂x−λz∂z for some λ≠0. The restriction of such systems to a Center Manifold has a nilpotent singular point at the origin. We prove that if the restricted system is analytic and has a nilpotent center at the origin, with Andreev number 2, then the three-dimensional system admits a formal inverse Jacobi multiplier. We also prove that nilpotent centers of three-dimensional systems, on analytic center manifolds, are limits of Hopf-type centers. We use these results to solve the center problem for some three-dimensional systems without restricting the system to a parametrization of the center manifold.

Descrição

Palavras-chave

Center problem, Monodromy, Nilpotent singular points

Idioma

Inglês

Citação

Journal of Mathematical Analysis and Applications, v. 525, n. 1, 2023.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso