Logo do repositório

Artificial intelligence method developed for classifying raw sugarcane in the presence of the solid impurity

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

An investigation dedicated to evaluating a big issue in biorefineries, solid impurity in raw sugarcane, is presented. This relevant industrial sector requests a high-frequency, low-cost, and noninvasive method. Then, the developed method uses the averaged color values of ten color-scale descriptors: R (red), G (green), B (blue), their relative colors (r, g, and b), H (hue), S (saturation), V (value) and L (luminosity) from digital images acquired from 146 solid mixtures among sugarcane stalks and solid impurity-vegetal parts (green and dry leaves) and soil. The solid mixture of samples was prepared considering desirable and undesirable scenarios for the solid impurity amounts. The outstanding result was revealed by an artificial neural network (ANN), achieving 100% of accurate classifications for two ranges of raw sugarcane in the samples: From 90 to 100 wt% and from 41 to 87 wt%. Low-computational cost and a simple setup for image acquisition method could screen solid impurity in sugarcane shipments as a promising application.

Descrição

Palavras-chave

ANN, Bioenergy, Classification, Image, Sugarcane

Idioma

Inglês

Citação

Ecletica Quimica, v. 46, n. 3, p. 49-54, 2021.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Instituto de Química
IQAR
Campus: Araraquara


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso