An optimizationless stochastic volterra series approach for nonlinear model identification
| dc.contributor.author | Villani, Luis Gustavo Giacon | |
| dc.contributor.author | Silva, Samuel da [UNESP] | |
| dc.contributor.author | Cunha, Americo | |
| dc.contributor.institution | Universidade Federal do Espírito Santo (UFES) | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Universidade do Estado do Rio de Janeiro (UERJ) | |
| dc.date.accessioned | 2023-03-01T20:04:50Z | |
| dc.date.available | 2023-03-01T20:04:50Z | |
| dc.date.issued | 2022-06-01 | |
| dc.description.abstract | Volterra series is a widely used tool for identifying physical systems with polynomial nonlinearities. In this approach, the Volterra kernels expanded using Kautz functions can be identified using several techniques to optimize the filters’ poles. This methodology is very efficient when the system observations are not subject to high noise-induced variabilities (uncertainties). However, this optimization procedure may not be effective when the uncertainty level is increased since the optimal value might be susceptible to small perturbations. Seeking to overcome this weakness, the present work proposes a new stochastic method of identification based on the Volterra series, which does not solve an optimization problem. In this new approach, the Volterra kernels are described as stochastic processes. The parameters of Kautz filters are considered independent random variables so that their probability distribution captures the variabilities. The effectiveness of the new technique is tested experimentally in a nonlinear mechanical system. The results show that the identified stochastic Volterra kernels can reproduce the nonlinear dynamics characteristics and the data variability. | en |
| dc.description.affiliation | Departamento de Engenharia Mecânica Centro Tecnológico Universidade Federal do Espírito Santo – UFES, Av. Fernando Ferrari, 514, Espírito Santo | |
| dc.description.affiliation | Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista – UNESP, Av. Brasil, 56, São Paulo | |
| dc.description.affiliation | Instituto de Matemática e Estatística Universidade do Estado do Rio de Janeiro – UERJ, R. São Francisco Xavier, 524, Rio de Janeiro | |
| dc.description.affiliationUnesp | Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista – UNESP, Av. Brasil, 56, São Paulo | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | CAPES: 001 | |
| dc.description.sponsorshipId | FAPERJ: 201.294/2021 | |
| dc.description.sponsorshipId | FAPESP: 2012/09135-3 | |
| dc.description.sponsorshipId | FAPESP: 2015/25676-2 | |
| dc.description.sponsorshipId | FAPERJ: 210.021/2018 | |
| dc.description.sponsorshipId | FAPERJ: 210.167/2019 | |
| dc.description.sponsorshipId | FAPERJ: 211.037/2019 | |
| dc.description.sponsorshipId | FAPERJ: 211.304/2015 | |
| dc.description.sponsorshipId | CNPq: 303403/2013-6 | |
| dc.description.sponsorshipId | CNPq: 306526/2019-0 | |
| dc.identifier | http://dx.doi.org/10.1007/s40430-022-03558-z | |
| dc.identifier.citation | Journal of the Brazilian Society of Mechanical Sciences and Engineering, v. 44, n. 6, 2022. | |
| dc.identifier.doi | 10.1007/s40430-022-03558-z | |
| dc.identifier.issn | 1806-3691 | |
| dc.identifier.issn | 1678-5878 | |
| dc.identifier.scopus | 2-s2.0-85131219284 | |
| dc.identifier.uri | http://hdl.handle.net/11449/240177 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering | |
| dc.source | Scopus | |
| dc.subject | Nonlinear systems | |
| dc.subject | Stochastic models | |
| dc.subject | Stochastic Volterra series | |
| dc.subject | Uncertain systems | |
| dc.title | An optimizationless stochastic volterra series approach for nonlinear model identification | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| relation.isOrgUnitOfPublication | 85b724f4-c5d4-4984-9caf-8f0f0d076a19 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 85b724f4-c5d4-4984-9caf-8f0f0d076a19 | |
| unesp.author.orcid | 0000-0002-1093-8479[1] | |
| unesp.author.orcid | 0000-0001-6430-3746[2] | |
| unesp.author.orcid | 0000-0002-8342-0363[3] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteira | pt |

