Logo do repositório

An optimizationless stochastic volterra series approach for nonlinear model identification

dc.contributor.authorVillani, Luis Gustavo Giacon
dc.contributor.authorSilva, Samuel da [UNESP]
dc.contributor.authorCunha, Americo
dc.contributor.institutionUniversidade Federal do Espírito Santo (UFES)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade do Estado do Rio de Janeiro (UERJ)
dc.date.accessioned2023-03-01T20:04:50Z
dc.date.available2023-03-01T20:04:50Z
dc.date.issued2022-06-01
dc.description.abstractVolterra series is a widely used tool for identifying physical systems with polynomial nonlinearities. In this approach, the Volterra kernels expanded using Kautz functions can be identified using several techniques to optimize the filters’ poles. This methodology is very efficient when the system observations are not subject to high noise-induced variabilities (uncertainties). However, this optimization procedure may not be effective when the uncertainty level is increased since the optimal value might be susceptible to small perturbations. Seeking to overcome this weakness, the present work proposes a new stochastic method of identification based on the Volterra series, which does not solve an optimization problem. In this new approach, the Volterra kernels are described as stochastic processes. The parameters of Kautz filters are considered independent random variables so that their probability distribution captures the variabilities. The effectiveness of the new technique is tested experimentally in a nonlinear mechanical system. The results show that the identified stochastic Volterra kernels can reproduce the nonlinear dynamics characteristics and the data variability.en
dc.description.affiliationDepartamento de Engenharia Mecânica Centro Tecnológico Universidade Federal do Espírito Santo – UFES, Av. Fernando Ferrari, 514, Espírito Santo
dc.description.affiliationFaculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista – UNESP, Av. Brasil, 56, São Paulo
dc.description.affiliationInstituto de Matemática e Estatística Universidade do Estado do Rio de Janeiro – UERJ, R. São Francisco Xavier, 524, Rio de Janeiro
dc.description.affiliationUnespFaculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista – UNESP, Av. Brasil, 56, São Paulo
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdFAPERJ: 201.294/2021
dc.description.sponsorshipIdFAPESP: 2012/09135-3
dc.description.sponsorshipIdFAPESP: 2015/25676-2
dc.description.sponsorshipIdFAPERJ: 210.021/2018
dc.description.sponsorshipIdFAPERJ: 210.167/2019
dc.description.sponsorshipIdFAPERJ: 211.037/2019
dc.description.sponsorshipIdFAPERJ: 211.304/2015
dc.description.sponsorshipIdCNPq: 303403/2013-6
dc.description.sponsorshipIdCNPq: 306526/2019-0
dc.identifierhttp://dx.doi.org/10.1007/s40430-022-03558-z
dc.identifier.citationJournal of the Brazilian Society of Mechanical Sciences and Engineering, v. 44, n. 6, 2022.
dc.identifier.doi10.1007/s40430-022-03558-z
dc.identifier.issn1806-3691
dc.identifier.issn1678-5878
dc.identifier.scopus2-s2.0-85131219284
dc.identifier.urihttp://hdl.handle.net/11449/240177
dc.language.isoeng
dc.relation.ispartofJournal of the Brazilian Society of Mechanical Sciences and Engineering
dc.sourceScopus
dc.subjectNonlinear systems
dc.subjectStochastic models
dc.subjectStochastic Volterra series
dc.subjectUncertain systems
dc.titleAn optimizationless stochastic volterra series approach for nonlinear model identificationen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublication85b724f4-c5d4-4984-9caf-8f0f0d076a19
relation.isOrgUnitOfPublication.latestForDiscovery85b724f4-c5d4-4984-9caf-8f0f0d076a19
unesp.author.orcid0000-0002-1093-8479[1]
unesp.author.orcid0000-0001-6430-3746[2]
unesp.author.orcid0000-0002-8342-0363[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos