Logotipo do repositório
 

Publicação:
Optimal Power Flow with Renewable Generation: A Modified NSGA-II-based Probabilistic Solution Approach

dc.contributor.authorAraujo, Elaynne Xavier Souza
dc.contributor.authorCerbantes, Marcel Chuma
dc.contributor.authorMantovani, José Roberto Sanches [UNESP]
dc.contributor.institutionUFMT
dc.contributor.institutionCTG Brasil
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T02:41:39Z
dc.date.available2020-12-12T02:41:39Z
dc.date.issued2020-08-01
dc.description.abstractThe rapid expansion of renewable generation has drastically increased the planning complexity of modern power systems as additional uncertainties, environmental concerns, and technical–economic issues should be accounted for. Within this context, the best operation performance of contemporary power system operators (SOs) depends not just on tractable realistic optimal power flow (OPF) formulations, but also on powerful optimization approaches. In this work, a tractable life-like multi-objective probabilistic OPF-based model for the SO’s medium-term operation considering high penetration of renewable resources is proposed. This model includes an explicit formulation of the operation of dispatchable and non-dispatchable generation, shunt reactive power sources, and under-load tap-changing (ULTC) transformers. The resulting model is a large-scale probabilistic multi-objective non-convex nonlinear mixed-integer programming (NLMIP) problem with continuous, discrete, and binary variables. To ensure tractability, uncertainties are modeled through a fast and efficient 2m probabilistic approach. To handle the nonlinearities and non-continuous variables that characterize the problem, a modified non-dominated sorting genetic algorithm (NSGA)-II solution approach is proposed and effectively tested.en
dc.description.affiliationFederal University of Mato Grosso UFMT
dc.description.affiliationChina Three Gorges Brasil CTG Brasil
dc.description.affiliationState University of São Paulo UNESP
dc.description.affiliationUnespState University of São Paulo UNESP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipUniversidade Estadual Paulista
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdUniversidade Estadual Paulista: 028/2017
dc.description.sponsorshipIdFAPESP: 2013/13070-7
dc.description.sponsorshipIdFAPESP: 2015/21972-6
dc.description.sponsorshipIdCNPq: 305318/2016-0
dc.format.extent979-989
dc.identifierhttp://dx.doi.org/10.1007/s40313-020-00596-7
dc.identifier.citationJournal of Control, Automation and Electrical Systems, v. 31, n. 4, p. 979-989, 2020.
dc.identifier.doi10.1007/s40313-020-00596-7
dc.identifier.issn2195-3899
dc.identifier.issn2195-3880
dc.identifier.scopus2-s2.0-85085089855
dc.identifier.urihttp://hdl.handle.net/11449/201782
dc.language.isoeng
dc.relation.ispartofJournal of Control, Automation and Electrical Systems
dc.sourceScopus
dc.subjectMulti-objective optimization
dc.subjectNSGA-II
dc.subjectOptimal power flow
dc.subjectRenewable generation
dc.titleOptimal Power Flow with Renewable Generation: A Modified NSGA-II-based Probabilistic Solution Approachen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-4205-1311[2]
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos