Automatic Configuration of Genetic Algorithm for the Optimization of Electricity Market Participation Using Sequential Model Algorithm Configuration
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Complex optimization problems are often associated to large search spaces and consequent prohibitive execution times in finding the optimal results. This is especially relevant when dealing with dynamic real problems, such as those in the field of power and energy systems. Solving this type of problems requires new models that are able to find near-optimal solutions in acceptable times, such as metaheuristic optimization algorithms. The performance of these algorithms is, however, hugely dependent on their correct tuning, including their configuration and parametrization. This is an arduous task, usually done through exhaustive experimentation. This paper contributes to overcome this challenge by proposing the application of sequential model algorithm configuration using Bayesian optimization with Gaussian process and Monte Carlo Markov Chain for the automatic configuration of a genetic algorithm. Results from the application of this model to an electricity market participation optimization problem show that the genetic algorithm automatic configuration enables identifying the ideal tuning of the model, reaching better results when compared to a manual configuration, in similar execution times.
Descrição
Palavras-chave
Automatic algorithm configuration, Electricity markets, Genetic algorithm, Metaheuristic optimization, Portfolio optimization
Idioma
Inglês
Citação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13566 LNAI, p. 245-257.





