Logotipo do repositório
 

Publicação:
Supervised learning algorithms in the classification of plant populations with different degrees of kinship

dc.contributor.authorSkowronski, Leandro
dc.contributor.authorMoraes, Paula Martin de
dc.contributor.authorTeixeira de Moraes, Mario Luiz [UNESP]
dc.contributor.authorGoncalves, Wesley Nunes
dc.contributor.authorConstantino, Michel
dc.contributor.authorCosta, Celso Soares
dc.contributor.authorFava, Wellington Santos
dc.contributor.authorCosta, Reginaldo B.
dc.contributor.institutionUniv Catolica Dom Bosco
dc.contributor.institutionFed Univ Grande Dourados
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.contributor.institutionFed Inst Educ Sci & Technol Mato Grosso do Sul
dc.date.accessioned2021-06-25T11:50:32Z
dc.date.available2021-06-25T11:50:32Z
dc.date.issued2021-02-04
dc.description.abstractThe population discrimination and the classification of individuals have great importance for genetic improvement in population studies and genetic diversity conservation. Furthermore, multivariate approaches are often used, especially the Fisher and Anderson discriminant functions. New methodologies based on machine learning (ML) have shown to be promising for such procedures, but there is nonetheless a need for further evaluation and comparison of these methods. Thus, the present study evaluates the efficacy of supervised ML algorithms in classifying populations with different degrees of similarity-comparing them with discriminant analysis techniques proposed by Anderson and by Fisher. The methods of supervised ML tested were as follows: Naive Bayes, Decision Tree, k-Nearest Neighbors (kNN), Random Forest, Support Vector Machine (SVM) and Multi-layer Perceptron Neural Networks (MLP/ANN). To compare classification methods, we used phenotypic data of populations with different degrees of genetic similarity. Data stemmed from the genotypic information simulation for different populations submitted to the backcrossing scheme. Accuracy here means 30 repetitions from each classification method were compared by the Friedman and Nemenyi tests with a 95% confidence level. Classification methods based on machine learning algorithms showed superior results to the Fisher and Anderson discriminant functions, obtaining high accuracy where there was a higher similarity between populations. The kNN, Random Forest, SVM and Naive Bayes algorithms presented the highest accuracy, surpassing the Decision Tree algorithm and even MLP/ANN (which lost accuracy at a 96.88% similarity condition between populations). Thus, the present work confirms that ML techniques demonstrate greater accuracy in the discrimination and classification of populations without the limitations of statistical techniques.en
dc.description.affiliationUniv Catolica Dom Bosco, Campo Grande, MS, Brazil
dc.description.affiliationFed Univ Grande Dourados, Dourados, MS, Brazil
dc.description.affiliationPaulista State Univ Julio de Mesquita Filho, Ilha Solteira, SP, Brazil
dc.description.affiliationUniv Fed Mato Grosso do Sul, Campo Grande, MS, Brazil
dc.description.affiliationFed Inst Educ Sci & Technol Mato Grosso do Sul, Campo Grande, MS, Brazil
dc.description.affiliationUniv Fed Mato Grosso do Sul, Inst Biosci, Lab Ecol & Evolutionary Biol, BR-79070900 Campo Grande, MS, Brazil
dc.description.affiliationUnespPaulista State Univ Julio de Mesquita Filho, Ilha Solteira, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCAPES: PNPD/CAPES 88882.315120/2019-01
dc.description.sponsorshipIdCAPES: CNPq 301840/2016-4
dc.format.extent9
dc.identifierhttp://dx.doi.org/10.1007/s40415-021-00703-1
dc.identifier.citationBrazilian Journal Of Botany. Sao Paulo: Soc Botanica Sao Paulo, 9 p., 2021.
dc.identifier.doi10.1007/s40415-021-00703-1
dc.identifier.issn0100-8404
dc.identifier.urihttp://hdl.handle.net/11449/209174
dc.identifier.wosWOS:000614671900001
dc.language.isoeng
dc.publisherSoc Botanica Sao Paulo
dc.relation.ispartofBrazilian Journal Of Botany
dc.sourceWeb of Science
dc.subjectClassification methods
dc.subjectGenetic improvement
dc.subjectMachine learning
dc.subjectSimilarity between populations
dc.titleSupervised learning algorithms in the classification of plant populations with different degrees of kinshipen
dc.typeArtigopt
dcterms.rightsHolderSoc Botanica Sao Paulo
dspace.entity.typePublication
unesp.author.orcid0000-0002-1076-9812[3]
unesp.author.orcid0000-0003-2570-0209[5]
unesp.author.orcid0000-0001-7040-7058[6]
unesp.author.orcid0000-0002-3608-0503[7]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos