Logotipo do repositório
 

Publicação:
An efficient neural approach to economic load dispatch in power systems

dc.contributor.authorda Silva, I. N.
dc.contributor.authorNepomuceno, L.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:27:14Z
dc.date.available2014-05-20T13:27:14Z
dc.date.issued2001-01-01
dc.description.abstractA neural approach to solve the problem defined by the economic load dispatch in power systems is presented in this paper, Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements the ability of neural networks to realize some complex nonlinear function makes them attractive for system optimization the neural networks applyed in economic load dispatch reported in literature sometimes fail to converge towards feasible equilibrium points the internal parameters of the modified Hopfield network developed here are computed using the valid-subspace technique These parameters guarantee the network convergence to feasible quilibrium points, A solution for the economic load dispatch problem corresponds to an equilibrium point of the network. Simulation results and comparative analysis in relation to other neural approaches are presented to illustrate efficiency of the proposed approach.en
dc.description.affiliationUNESP, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespUNESP, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil
dc.format.extent1269-1274
dc.identifierhttp://dx.doi.org/10.1109/PESS.2001.970255
dc.identifier.citation2001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings. New York: IEEE, p. 1269-1274, 2001.
dc.identifier.doi10.1109/PESS.2001.970255
dc.identifier.lattes2013445187247691
dc.identifier.urihttp://hdl.handle.net/11449/8906
dc.identifier.wosWOS:000176406700275
dc.language.isoeng
dc.publisherIEEE
dc.relation.ispartof2001 Power Engineering Society Summer Meeting, Vols 1-3, Conference Proceedings
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjecteconomic dispatchpt
dc.subjectartificial neural networkspt
dc.subjectHopfield modelpt
dc.subjectnonlinear optimizationpt
dc.titleAn efficient neural approach to economic load dispatch in power systemsen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIEEE
dspace.entity.typePublication
unesp.author.lattes2013445187247691
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: