Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Optimal location-allocation of storage devices and renewable-based DG in distribution systems

dc.contributor.authorHome-Ortiz, Juan M. [UNESP]
dc.contributor.authorPourakbari-Kasmaei, Mahdi
dc.contributor.authorLehtonen, Matti
dc.contributor.authorSanches Mantovani, José Roberto [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionAalto University
dc.date.accessioned2019-10-06T17:04:16Z
dc.date.available2019-10-06T17:04:16Z
dc.date.issued2019-07-01
dc.description.abstractThis paper proposes a mixed integer conic programming (MICP) model to find the optimal type, size, and place of distributed generators (DG) over a multistage planning horizon in radial distribution systems. The proposed planning framework focuses on the optimal siting and sizing of wind turbines, photovoltaic panels, gas turbines, and energy storage devices (ESD). Inherently, renewable energy sources and electricity demands are subject to uncertainty. To handle such probabilistic situations in decision-making, the MICP model is extended into a two-stage stochastic programming model. To obtain more practical results, annual historical data are used to generate the scenarios. For the sake of tractability, the k-means clustering technique is used to reduce the number of scenarios while keeping the correlation between the uncertain data. Due to convexity, the proposed MICP model guarantees to find the global optimal solution. To show the potential and performance of the proposed model a 69-bus radial distribution system under different conditions is dully studied and a sensitivity analysis is conducted. Results and comparisons approve its effectiveness and usefulness.en
dc.description.affiliationDepartment of Electrical Engineering São Paulo State University (UNESP)
dc.description.affiliationDepartment of Electrical Engineering and Automation Aalto University, Maarintie 8
dc.description.affiliationUnespDepartment of Electrical Engineering São Paulo State University (UNESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2015/21972-6
dc.description.sponsorshipIdCNPq: 305318/2016-0
dc.format.extent11-21
dc.identifierhttp://dx.doi.org/10.1016/j.epsr.2019.02.013
dc.identifier.citationElectric Power Systems Research, v. 172, p. 11-21.
dc.identifier.doi10.1016/j.epsr.2019.02.013
dc.identifier.issn0378-7796
dc.identifier.scopus2-s2.0-85062327675
dc.identifier.urihttp://hdl.handle.net/11449/190158
dc.language.isoeng
dc.relation.ispartofElectric Power Systems Research
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectConic programming
dc.subjectDistributed generation
dc.subjectEnergy storage
dc.subjectMultistage distribution system planning
dc.subjectRenewable energy sources
dc.subjectStochastic programming
dc.titleOptimal location-allocation of storage devices and renewable-based DG in distribution systemsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-4803-7753[2]
unesp.author.orcid0000-0002-9979-7333[3]
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos