Publicação: Co-stressors chilling and high light increase photooxidative stress in diuron-treated red alga Kappaphycus alvarezii but with lower involvement of H2O2
Nenhuma Miniatura disponível
Data
2011-01-01
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Academic Press Inc. Elsevier B.V.
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Diuron is one of the most commonly found N-phenylurea herbicides in marine/estuarine waters that promotes toxic effects by inhibiting photosynthesis and affecting the production of reactive oxygen species (ROS) in autotrophs. Since photo- and thermoacclimation are also ROS-mediated processes, this work evaluates a hypothetical additive effect of high light (HL) and chilling (12 degrees C) on 50 nM diuron toxicity to the highly-photosynthetically active apices of the red alga Kappaphycus alvarezii. Additive inhibition of photosynthesis was mainly evidenced by significant decreases of quantum yield of photosystem II and electron transfer rates upon co-stressors exposure to diuron-treated algae. Under extreme 12 degrees C/HL/diuron conditions, unexpected lower correlations between H2O2 concentrations in seawater and radical-sensitive protein thiols were concomitantly measured with the highest indexes of photoinhibition (parameter beta). Altogether, these data support the hypothesis that co-stressors chilling/HL additively inhibit photosynthesis in diuron-exposed K. alvarezii but with less involvement of H2O2 in injury effects than with only chilling or HL. (C) 2010 Elsevier B.V. All rights reserved.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Pesticide Biochemistry and Physiology. San Diego: Academic Press Inc. Elsevier B.V., v. 99, n. 1, p. 7-15, 2011.