Publicação: Pseudechis australis Venomics: Adaptation for a Defense against Microbial Pathogens and Recruitment of Body Transferrin
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Chemical Soc
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
The venom composition of Pseudechis australis, a widely distributed in Australia reptile, was analyzed by 2-DE and mass spectrometric analysis. In total, 102 protein spots were identified as venom toxins. The gel is dominated by horizontal trains of spots with identical or very similar molecular masses but differing in the pI values. This suggests possible post-translational modifications of toxins, changing their electrostatic charge. The results demonstrate a highly specialized biosynthesis of toxins destroying the hemostasis (P-III metalloproteases, SVMPs), antimicrobial proteins (L-amino acid oxidases, LAAOs, and transferrin-like proteins, TFLPs), and myotoxins (phospholipase A(2)s, PLA(2)s). The three transferrin isoforms of the Australian P. avstralis (Elapidae snake) venom are highly homologous to the body transferrin of the African Lamprophis fuliginosus (Colubridae), an indication for the recruitment of body transferrin. The venomic composition suggests an adaptation for a defense against microbial pathogens from the prey. Transferrins have not previously been reported as components of elapid or other snake venoms. Ecto-5'-nucleotidases (5'-NTDs), nerve growth factors (VNGFs), and a serine proteinase inhibitor (SPI) were also identified. The venom composition and enzymatic activities explain the clinical manifestation of the king brown snakebite. The results can be used for medical, scientific, and biotechnological purposes.
Descrição
Palavras-chave
Snake venomic, Pseudechis australis, 2-D electrophoresis, electrospray mass spectrometry, venom transferrin, Enzymatic activity
Idioma
Inglês
Como citar
Journal of Proteome Research. Washington: Amer Chemical Soc, v. 10, n. 5, p. 2440-2464, 2011.