Publicação: Environmental monitoring using drone images and convolutional neural networks
dc.contributor.author | Thomazella, R. | |
dc.contributor.author | Castanho, J. E. | |
dc.contributor.author | Dotto, F. R.L. | |
dc.contributor.author | Rodrigues Júnior, O. P. | |
dc.contributor.author | Rosa, G. H. | |
dc.contributor.author | Marana, A. N. | |
dc.contributor.author | Papa, J. P. | |
dc.contributor.institution | Saõ Paulo State University | |
dc.contributor.institution | Corumbá Concessões S.A | |
dc.date.accessioned | 2022-04-29T08:45:25Z | |
dc.date.available | 2022-04-29T08:45:25Z | |
dc.date.issued | 2018-10-31 | |
dc.description.abstract | Recently, drone images have been used in a number of applications, mainly for pollution control and surveillance purposes. In this paper, we introduce the well-known Convolutional Neural Networks in the context of environmental monitoring using drone images, and we show their robustness in real-world images obtained from uncontrolled scenarios. We consider a transfer learning-based approach and compare two neural models, i.e., VGG16 and VGG19, to distinguish four classes: water, deforesting area, forest, and buildings. The results are analyzed by experts in the field and considered pretty much reasonable. | en |
dc.description.affiliation | Department of Electrical Engineering Faculty of Engineering of Bauru Saõ Paulo State University | |
dc.description.affiliation | Corumbá Concessões S.A, SIA Trecho 3 Lote 1875 | |
dc.description.affiliation | Department of Computing Faculty of Sciences Saõ Paulo State University | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
dc.format.extent | 8941-8944 | |
dc.identifier | http://dx.doi.org/10.1109/IGARSS.2018.8518581 | |
dc.identifier.citation | International Geoscience and Remote Sensing Symposium (IGARSS), v. 2018-July, p. 8941-8944. | |
dc.identifier.doi | 10.1109/IGARSS.2018.8518581 | |
dc.identifier.scopus | 2-s2.0-85064201349 | |
dc.identifier.uri | http://hdl.handle.net/11449/231431 | |
dc.language.iso | eng | |
dc.relation.ispartof | International Geoscience and Remote Sensing Symposium (IGARSS) | |
dc.source | Scopus | |
dc.subject | Convolutional Neural Networks | |
dc.subject | Drones | |
dc.subject | Land-use classification | |
dc.title | Environmental monitoring using drone images and convolutional neural networks | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.department | Engenharia Elétrica - FEB | pt |