Logo do repositório

Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images

dc.contributor.authorMacedo, Fabrício L.
dc.contributor.authorSousa, Adélia M. O.
dc.contributor.authorGonçalves, Ana Cristina
dc.contributor.authorMarques da Silva, José R.
dc.contributor.authorMesquita, Paulo A.
dc.contributor.authorRodrigues, Ricardo A. F. [UNESP]
dc.contributor.institutionUniversidade de Trás-os-Montes e Alto Douro
dc.contributor.institutionUniversidade de Évora Apartado 94
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T15:58:57Z
dc.date.available2019-10-06T15:58:57Z
dc.date.issued2018-01-01
dc.description.abstractThe estimation of vegetation parameters, such as above-ground biomass, with high accuracy using remote sensing data, represents a promising approach. The present study develops models to estimate and map above-ground biomass of Mediterranean Quercus rotundifolia stands using one QuickBird satellite image in pan-sharpened mode, with four multispectral bands (blue, green, red and near infrared) and a spatial resolution of 0.70 m. The satellite image was orthorectified, geometrically and radiometrically corrected. Object-oriented classification methods and multi-resolution segmentation were used to derive a vegetation mask per forest species. Data from forest inventory (24 plots) and vegetation indices (NDVI, EVI, SR and SAVI) derived from high spatial resolution satellite images were used for an area of 133 km2, in southern Portugal. The statistical analysis included correlation, variance analysis and linear regression. The linear regression models fitted included the arithmetic mean and the median values of the vegetation indices per inventory plot as explanatory variables. The overall results of the fitted models show a trend of better performance for those with the median value of the vegetation index as the explanatory variable. The best fitted model (R2 = 75.3) was associated with the Simple Ratio (SR) median value as an explanatory variable. A Quercus rotundifolia above-ground biomass map was produced.en
dc.description.affiliationCentro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB) Universidade de Trás-os-Montes e Alto Douro
dc.description.affiliationDepartamento de Engenharia Rural Escola de Ciências e Tecnologia Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM) Instituto de Investigação e Formação Avançada Universidade de Évora Apartado 94
dc.description.affiliationDepartamento de Fitossanidade Engenharia Rural e Solos Universidade Estadual Paulista–UNESP/FE Campus de Ilha Solteira
dc.description.affiliationUnespDepartamento de Fitossanidade Engenharia Rural e Solos Universidade Estadual Paulista–UNESP/FE Campus de Ilha Solteira
dc.description.sponsorshipQatar National Research Fund
dc.description.sponsorshipIdQatar National Research Fund: UID/AGR/00115/2013
dc.format.extent932-944
dc.identifierhttp://dx.doi.org/10.1080/22797254.2018.1521250
dc.identifier.citationEuropean Journal of Remote Sensing, v. 51, n. 1, p. 932-944, 2018.
dc.identifier.doi10.1080/22797254.2018.1521250
dc.identifier.issn2279-7254
dc.identifier.issn1129-8596
dc.identifier.scopus2-s2.0-85054379613
dc.identifier.urihttp://hdl.handle.net/11449/188153
dc.language.isoeng
dc.relation.ispartofEuropean Journal of Remote Sensing
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.subjectAbove-ground biomass
dc.subjecthigh spatial resolution
dc.subjectlinear regression
dc.subjectvegetation indices
dc.titleAbove-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite imagesen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentFitossanidade, Engenharia Rural e Solos - FEISpt

Arquivos