Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images
| dc.contributor.author | Macedo, Fabrício L. | |
| dc.contributor.author | Sousa, Adélia M. O. | |
| dc.contributor.author | Gonçalves, Ana Cristina | |
| dc.contributor.author | Marques da Silva, José R. | |
| dc.contributor.author | Mesquita, Paulo A. | |
| dc.contributor.author | Rodrigues, Ricardo A. F. [UNESP] | |
| dc.contributor.institution | Universidade de Trás-os-Montes e Alto Douro | |
| dc.contributor.institution | Universidade de Évora Apartado 94 | |
| dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
| dc.date.accessioned | 2019-10-06T15:58:57Z | |
| dc.date.available | 2019-10-06T15:58:57Z | |
| dc.date.issued | 2018-01-01 | |
| dc.description.abstract | The estimation of vegetation parameters, such as above-ground biomass, with high accuracy using remote sensing data, represents a promising approach. The present study develops models to estimate and map above-ground biomass of Mediterranean Quercus rotundifolia stands using one QuickBird satellite image in pan-sharpened mode, with four multispectral bands (blue, green, red and near infrared) and a spatial resolution of 0.70 m. The satellite image was orthorectified, geometrically and radiometrically corrected. Object-oriented classification methods and multi-resolution segmentation were used to derive a vegetation mask per forest species. Data from forest inventory (24 plots) and vegetation indices (NDVI, EVI, SR and SAVI) derived from high spatial resolution satellite images were used for an area of 133 km2, in southern Portugal. The statistical analysis included correlation, variance analysis and linear regression. The linear regression models fitted included the arithmetic mean and the median values of the vegetation indices per inventory plot as explanatory variables. The overall results of the fitted models show a trend of better performance for those with the median value of the vegetation index as the explanatory variable. The best fitted model (R2 = 75.3) was associated with the Simple Ratio (SR) median value as an explanatory variable. A Quercus rotundifolia above-ground biomass map was produced. | en |
| dc.description.affiliation | Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB) Universidade de Trás-os-Montes e Alto Douro | |
| dc.description.affiliation | Departamento de Engenharia Rural Escola de Ciências e Tecnologia Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM) Instituto de Investigação e Formação Avançada Universidade de Évora Apartado 94 | |
| dc.description.affiliation | Departamento de Fitossanidade Engenharia Rural e Solos Universidade Estadual Paulista–UNESP/FE Campus de Ilha Solteira | |
| dc.description.affiliationUnesp | Departamento de Fitossanidade Engenharia Rural e Solos Universidade Estadual Paulista–UNESP/FE Campus de Ilha Solteira | |
| dc.description.sponsorship | Qatar National Research Fund | |
| dc.description.sponsorshipId | Qatar National Research Fund: UID/AGR/00115/2013 | |
| dc.format.extent | 932-944 | |
| dc.identifier | http://dx.doi.org/10.1080/22797254.2018.1521250 | |
| dc.identifier.citation | European Journal of Remote Sensing, v. 51, n. 1, p. 932-944, 2018. | |
| dc.identifier.doi | 10.1080/22797254.2018.1521250 | |
| dc.identifier.issn | 2279-7254 | |
| dc.identifier.issn | 1129-8596 | |
| dc.identifier.scopus | 2-s2.0-85054379613 | |
| dc.identifier.uri | http://hdl.handle.net/11449/188153 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | European Journal of Remote Sensing | |
| dc.rights.accessRights | Acesso restrito | |
| dc.source | Scopus | |
| dc.subject | Above-ground biomass | |
| dc.subject | high spatial resolution | |
| dc.subject | linear regression | |
| dc.subject | vegetation indices | |
| dc.title | Above-ground biomass estimation for Quercus rotundifolia using vegetation indices derived from high spatial resolution satellite images | en |
| dc.type | Artigo | |
| dspace.entity.type | Publication | |
| unesp.department | Fitossanidade, Engenharia Rural e Solos - FEIS | pt |

