Logotipo do repositório
 

Publicação:
Moving frames for Lie symmetries reduction of nonholonomic systems

dc.contributor.authorBasquerotto, Cláudio H. C. Costa
dc.contributor.authorRuiz, Adrián
dc.contributor.authorRighetto, Edison [UNESP]
dc.contributor.authorda Silva, Samuel [UNESP]
dc.contributor.institutionUniversidade Federal do Sul e Sudeste do Pará - UNIFESSPA
dc.contributor.institutionUniversidad de Cádiz - UCA
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-06T16:37:17Z
dc.date.available2019-10-06T16:37:17Z
dc.date.issued2019-08-01
dc.description.abstractGiven a Lie group of finite-dimensional transformations acting on a manifold, there is always an action known as a long-acting group action. This action describes the fundamental basis of the Lie theory connecting groups of symmetry in differential equations. Differential invariants emerge as constants of the action of the prolongation of a group. Élie Cartan extended this in the twentieth century involving the geometry of the action of this group, grounding the so-called moving frame theory. With this theory, various applications are possible and detailed in the literature, such as symmetries of variational problems, conservation laws, invariant differential forms, and group invariant solutions. In order to demonstrate the approach, two nonholonomic constrained mechanical systems are exemplified to obtain either the general closed-solution in explicit form, when possible, or an order reduction provided by the Lie symmetries via moving frames. The first example is a coin with mass m rolling without slipping and takes on an inclined plane (x, y) with angle α and nonlinear constraint. The second example is a Chetaev type described by a dog pursuing a man in a plane surface with a nonholonomic restriction. A full detailed analysis is addressed to define the Lie symmetries and the corresponding moving frames obtained in both examples.en
dc.description.affiliationInstituto de Geociências e Engenharias Faculdade de Engenharia Mecânica Universidade Federal do Sul e Sudeste do Pará - UNIFESSPA
dc.description.affiliationDepartment of Mathematics Universidad de Cádiz - UCA
dc.description.affiliationDepartamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista - UNESP
dc.description.affiliationDepartamento de Engenharia Mecânica Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista - UNESP
dc.description.affiliationUnespDepartamento de Matemática Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista - UNESP
dc.description.affiliationUnespDepartamento de Engenharia Mecânica Faculdade de Engenharia de Ilha Solteira Universidade Estadual Paulista - UNESP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 307520/2016-1
dc.description.sponsorshipIdCNPq: 404463/2016-9
dc.description.sponsorshipIdCNPq: 426050/2018-5
dc.format.extent2963-2978
dc.identifierhttp://dx.doi.org/10.1007/s00707-019-02445-4
dc.identifier.citationActa Mechanica, v. 230, n. 8, p. 2963-2978, 2019.
dc.identifier.doi10.1007/s00707-019-02445-4
dc.identifier.issn0001-5970
dc.identifier.scopus2-s2.0-85068027489
dc.identifier.urihttp://hdl.handle.net/11449/189333
dc.language.isoeng
dc.relation.ispartofActa Mechanica
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleMoving frames for Lie symmetries reduction of nonholonomic systemsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-8289-5845[1]
unesp.author.orcid0000-0001-6430-3746[4]
unesp.departmentEngenharia Mecânica - FEISpt
unesp.departmentMatemática - FEISpt

Arquivos