Publicação: Biomarker evaluation in fish after prolonged exposure to nano-TiO2: influence of illumination conditions and crystal phase
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Scientific Publishers
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
In this study, we evaluated the effects of prolonged exposure to two different nano-TiO2 crystal phases under different illumination conditions. Fish (Piaractus mesopotamicus) were exposed for 21 days to 100 mg/L of nano-TiO2 anatase and a mixture of anatase:rutile (80%:20%) under visible light and UV light (UVA and B, 22.47 J/cm(2)/h). The following oxidative stress biomarkers were monitored: concentrations of lipid hydroperoxide (LPO), carbonylated proteins (PCO), and specific activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST). Other biomarkers as well as specific activities of acid phosphatase (AP), Na+, K+-ATPase and metallothionein levels (MT) were also evaluated. Moreover, micronucleus and comet assays were performed to assess genotoxicity. Our results showed low toxicity of nano-TiO2 to fish and lack of titanium accumulation in muscle tissue. However, it was observed the occurrence of sublethal effects that were influenced by nano-TiO2 crystal phase and illumination condition. Pure anatase caused more oxidative damage without co-exposure to UV, while the mixture anatase:rutile caused more sublethal effects when exposure occurred under UV. These findings show that the specific activity of CAT, GST, PCO levels and comet assay are useful as biomarkers of prolonged exposure to nano-TiO2. Overall, our study substantiates the development and implementation of nanoecotoxicological protocols.
Descrição
Palavras-chave
Nanotoxicity, Ultraviolet light, Ecotoxicology, Biomarkers, Oxidative stress
Idioma
Inglês
Como citar
Journal Of Nanoscience And Nanotechnology. Valencia: Amer Scientific Publishers, v. 15, n. 7, p. 5424-5433, 2015.