Logo do repositório

SKdV, SmKdV flows and their supersymmetric gauge-Miura transformations

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

The construction of Integrable Hierarchies in terms of zero curvature representation provides a systematic construction for a series of integrable non-linear evolution equations (flows) which shares a common affine Lie algebraic structure. The integrable hierarchies are then classified in terms of a decomposition of the underlying affine Lie algebra Gˆ into graded subspaces defined by a grading operator Q. In this paper we shall discuss explicitly the simplest case of the affine şl(2) Kac-Moody algebra within the principal gradation given rise to the KdV and mKdV hierarchies and extend to supersymmetric models. Inspired by the dressing transformation method, we have constructed a gaugeMiura transformation mapping mKdV into KdV flows. Interesting new results concerns the negative grade sector of the mKdV hierarchy in which a double degeneracy of flows (odd and its consecutive even) of mKdV are mapped into a single odd KdV flow. These results are extended to supersymmetric hierarchies based upon the affine şl(2, 1) super-algebra.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Open Communications in Nonlinear Mathematical Physics, v. 2024, n. Special Issue 2, p. 65-86, 2024.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso